【題目】已知反比例函數(shù)y=(k常數(shù),k≠1).
(1)若點(diǎn)A(2,1)在這個函數(shù)的圖象上,求k的值;
(2)若k=9,試判斷點(diǎn)B(﹣,﹣16)是否在這個函數(shù)的圖象上,并說明理由.
【答案】(1)k=3;(2)點(diǎn)B在這個函數(shù)的圖象上.
【解析】試題分析:(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出關(guān)于k的一元一次方程,解之即可得出k的值;
(2)根據(jù)點(diǎn)B的坐標(biāo)結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出點(diǎn)B在反比例函數(shù)圖象上,此題得解.
解:(1)∵點(diǎn)A(2,1)在這個函數(shù)的圖象上,
∴1=,
解得:k=3.
(2)點(diǎn)B(,-16)在這個函數(shù)的圖象上,理由如下:
∵×(-16)=8,k-1=8,
∴點(diǎn)B(,-16)在這個函數(shù)的圖象上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,將矩形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)得到矩形AEFG.
(1)如圖1,若在旋轉(zhuǎn)過程中,點(diǎn)E落在對角線AC上,AF,EF分別交DC于點(diǎn)M,N.
①求證:MA=MC;
②求MN的長;
(2)如圖2,在旋轉(zhuǎn)過程中,若直線AE經(jīng)過線段BG的中點(diǎn)P,連接BE,GE,求△BEG的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=900,AC=2BC=,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,,OB的長為半徑的圓恰好與AC相切于D,與邊AB相交于點(diǎn)E.
(1)求證:點(diǎn)D為AC的中點(diǎn);
(2)若點(diǎn)F為半圓BEF上的動點(diǎn),連接BD、BF、DF,填空:
當(dāng)∠BDF= 時,四邊形BCDF為菱形;
當(dāng)△BDF為直角三角形時,BF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費(fèi)用相同.
(1)A,B兩種型號的自行車的單價分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用分式方程解決問題:元旦假期有兩個小組去攀登- -座高h米的山,第二組的攀登速度是第- -組的a倍.
(1)若,兩小組同時開始攀登,結(jié)果第二組比第一組早到達(dá)頂峰.求兩個小組的攀登速度.
(2)若第二組比第一組晚出發(fā),結(jié)果兩組同時到達(dá)頂峰,求第二組的攀登速度比第一組快多少? (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽泉市郊區(qū)教科局提出開展“三有課堂”,某中學(xué)在一節(jié)體現(xiàn)“三有課堂”公開展示課上,李老師展示一幅圖,條件是:C為直線AB上一點(diǎn),∠DCE為直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各個小組經(jīng)過討論后得到以下結(jié)論:①∠ACF與∠BCH互余 ②∠FCG與∠HCG互補(bǔ) ③∠ECF與∠GCH互補(bǔ) ④∠ACD﹣∠BCE=90°,聰明的你認(rèn)為哪些組的結(jié)論是正確的,正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.
(1)求直線AB的解析式;
(2)動點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中如圖所示,
(1)S△ABC= .
(2)x軸上是否存在點(diǎn)P,使得S△BCP=2S△ABC,若不存在,說明理由;若存在,求出P點(diǎn)的坐標(biāo).
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com