【題目】如圖,直線(xiàn)CPAB的中垂線(xiàn)且交ABP,其中AP2CP.甲、乙兩人想在AB上取兩點(diǎn)DE,使得ADDCCEEB,其作法如下:

作∠ACP、BCP之角平分線(xiàn),分別交ABD、E,則DE即為所求;

ACBC之中垂線(xiàn),分別交ABD、E,則D、E即為所求.

對(duì)于甲、乙兩人的作法,下列判斷何者正確(  )

A. 兩人都正確 B. 兩人都錯(cuò)誤 C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確

【答案】D

【解析】試題解析:

甲、乙都正確,

理由是:∵CP是線(xiàn)段AB的垂直平分線(xiàn),

∴BC=AC,∠APC=∠BPC=90°,

∵AC=2CP

∴∠A=30°,

∴∠ACP=60°,

∵CD平分∠ACP,

∴∠ACD=ACP=30°,

∴∠ACD=∠A,

∴AD=DC,

同理CE=BE

D、E為所求;

∵DAC的垂直平分線(xiàn)上,

∴AD=CD,

同理CE=BE,

D、E為所求,

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)的解析表達(dá)式為,且軸交于點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn),直線(xiàn),交于點(diǎn)

1求點(diǎn)的坐標(biāo);

2求直線(xiàn)的解析表達(dá)式;

3的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過(guò)點(diǎn)P(a,0),作x軸的垂線(xiàn),分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.

(1)求函數(shù)y=kx+b的表達(dá)式;

(2)若點(diǎn)M是線(xiàn)段OD的中點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab的相反數(shù)是( ).
A.ab
B.-(ab)
C.ba
D.-ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=120°,D是BC的中點(diǎn),DEAB于點(diǎn)E,若EA=2,則BE=( )

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是(  ).
A.所有的有理數(shù)都有相反數(shù)
B.正數(shù)與負(fù)數(shù)互為相反數(shù)
C.在一個(gè)數(shù)的前面添上“-”,就得到它的相反數(shù).
D.在數(shù)軸上到原點(diǎn)距離相等的兩個(gè)點(diǎn)所表示的數(shù)是互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)漂亮的禮物盒是一個(gè)有11個(gè)面的棱柱,那么它有_____個(gè)頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案