【題目】在一個不透明的箱子里,裝有個紅和個黃球,它除了顏色外均相同.
隨機地從箱子里取出個球,則取出紅球的概率是多少?
小明、小亮都想去觀看足球比賽,但是只有一張門票,他們決定通過摸球游戲確定誰去.規(guī)則如下:隨機地從該箱子里同時取出個球,若兩球顏色相同,小明去;若兩球顏色不同,小亮去.這個游戲公平嗎?請你用樹狀圖或列表的方法,幫小明和小亮進行分析.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1是一個重要公式的幾何解釋.請你寫出這個公式: ;
(2)如圖2,已知,,且三點共線.
試證明;
(3)勾股定理是幾何學(xué)中的明珠,千百年來,人們對它的證明趨之若騖,有資料表明,關(guān)于勾股定理的證明方法已有500余種.課本中介紹了比較有代表性的趙爽弦圖.
伽菲爾德(Garfield,1881年任美國第20屆總統(tǒng))利用圖2證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),請你寫出該證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在ΔABC中,AB=AC,周長為24,AC邊上的中線BD把ΔABC分成周長為9和15的兩個部分,則ΔABC各邊的長分別為( )
A.10、10、4B.6、6、12C.5、9、10D.10、10、4或6、6、12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強公民的節(jié)約意識,合理利用天然氣費源,某市自1月1日起對市區(qū)民用管道天然氣價格進行調(diào)整,實行階梯式氣價,調(diào)能后的收費價格如表所示:
每月用氣量 | 單價(元/m3) |
不超出75m3的部分 | 2 |
超出75 m3不超過125 m3的部分 | a |
超出125 m2的部分 | a+0.5 |
(1)若某戶3月份用氣量為60 m3,則應(yīng)交費多少元?
(2)調(diào)價后每月支付燃氣費用y(元)與每月用氣量x(m3)的函數(shù)關(guān)系如圖所示,求a的值及線段AB對應(yīng)的一次函數(shù)的表達式;
(3)求射線BC對應(yīng)的一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖反映了初三(1)班、(2)班的體育成績。
(1)不用計算,根據(jù)條形統(tǒng)計圖,_______班學(xué)生的體育成績好一些。
(2)從圖中觀察出:三(1)班學(xué)生體育成績等級的眾數(shù)是_______;三(2)班學(xué)生體育成績等級的眾數(shù)是_______.
(3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、75、85、95分,請你觀察計算一下初三(1),(2)班的平均成績各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是兩個可以自由轉(zhuǎn)動的由紅、藍兩色構(gòu)成的轉(zhuǎn)盤,其中轉(zhuǎn)盤的藍色部分占整個轉(zhuǎn)盤的,轉(zhuǎn)盤中的藍色占整個轉(zhuǎn)盤的.轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后指針所指顏色就是轉(zhuǎn)出的顏色,現(xiàn)在甲、乙兩個人做游戲.
甲轉(zhuǎn)動轉(zhuǎn)盤,乙轉(zhuǎn)動轉(zhuǎn)盤,每人轉(zhuǎn)動十次,誰轉(zhuǎn)出的紅色次數(shù)多誰獲勝.你認為這個游戲公平嗎?如果不公平,誰容易獲勝,請說明理由;
小明提出下面的改進方案:由第三個人來轉(zhuǎn)動上面的兩個轉(zhuǎn)盤,如果兩個轉(zhuǎn)盤都轉(zhuǎn)出了紅色,則甲贏,否則乙贏,請你幫小明設(shè)計一種替代試驗的方法,并寫出試驗的步驟.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EM交AC于點N,連結(jié)DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com