精英家教網 > 初中數學 > 題目詳情

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數y= 在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于

【答案】40
【解析】解:過點A作AM⊥x軸于點M,如圖所示.

設OA=a,

在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=

∴AM=OAsin∠AOB= a,OM= = a,

∴點A的坐標為( a, a).

∵點A在反比例函數y= 的圖象上,

a= a2=48,

解得:a=10,或a=﹣10(舍去).

∴AM=8,OM=6,OB=OA=10.

∵四邊形OACB是菱形,點F在邊BC上,

∴S△AOF= S菱形OBCA= OBAM=40.

故答案是:40.

【考點精析】本題主要考查了比例系數k的幾何意義和菱形的性質的相關知識點,需要掌握幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象相交于A,B兩點,與y軸交于點C,與x軸交于點D,點D的坐標為(﹣1,0),點A的橫坐標是1,tan∠CDO=2.過點B作BH⊥y軸交y軸于H,連接AH.

(1)求一次函數和反比例函數的解析式;
(2)求△ABH面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的兩邊長分別為57,則第三邊的中線長x的取值范圍是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明騎自行車上學,開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程sm)關于時間tmin)的函數圖象,那么符合小明行駛情況的大致圖象是()

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點DDEABE.若△ADE的周長為8cm,AB_____ cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某農場種植一種蔬菜,銷售員張平根據往年的銷售情況,對今年這種蔬菜的銷售價格進行了預測,預測情況如圖,圖中的拋物線(部分)表示這種蔬菜銷售價與月份之間的關系.觀察圖象,你能得到關于這種蔬菜銷售情況的哪些信息?答題要求:(1)請?zhí)峁┧臈l信息;(2)不必求函數的解析式.(注:此題答案不唯一,以上答案僅供參考.若有其它答案,只要是根據圖象得出的信息,并且敘述正確都可以)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,每個小正方形的邊長均為1.求四邊形ABCD的面積和周長(精確到0.1).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形(  )

A. , B. ,

C. , D. ,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,要設計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為x米.

(1)用含x的式子表示橫向甬道的面積;
(2)當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據設計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

同步練習冊答案