【題目】“大美武漢,暢游江城”.某校數(shù)學興趣小組就“最想去的武漢市旅游景點”隨機調(diào)查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

1)求被調(diào)查的學生總?cè)藬?shù);

2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

3)若該校共有1200名學生,請估計“最想去景點B“的學生人數(shù).

【答案】(1)40;(2)詳見解析,72°;(3)420人.

【解析】

(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學生總?cè)藬?shù);

(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

(3)1200乘以樣本中最想去B景點的人數(shù)所占的百分比即可.

解:(1)被調(diào)查的學生總?cè)藬?shù)為8÷20%40();

(2)最想去D景點的人數(shù)為40-8-14-4-68()

補全條形統(tǒng)計圖為:

扇形統(tǒng)計圖中表示最想去景點D的扇形圓心角的度數(shù)為×360°72°;

31200×420

所以估計最想去景點B的學生人數(shù)為420人.

故答案為:(1)40;(2)圖形見解析,72°;(3)420.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BEAC,垂足為ECFAB,垂足為F,點DBC的中點,BE,CF交于點M,如果CM=4,FM=5,則BE等于( )

A. 14B. 13C. 12D. 11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,ABAC,點EBC的中點,AEBD交于點F,且FAE的中點.

(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC4,AB5,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設直線ykx+6和直線y=(k+1x+6k是正整數(shù))及x軸圍成的三角形面積為Skk1,2,3,…,8),則S1+S2+S3++S8的值是( 。

A. B. C. 16D. 14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標有數(shù)字0和-2;乙袋中有3個完全相同的小球,分別標有數(shù)字-2,0和1,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)寫出點Q所有可能的坐標;
(2)求點Q在x軸上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點AB分別是x軸正半軸與y軸正半軸上一點,OAm,OBn,以AB為邊在第一象限內(nèi)作正方形ABCD

1)若m4,n3,直接寫出點C與點D的坐標;

2)點C在直線ykxk1k為常數(shù))上運動.

如圖1,若k2,求直線OD的解析式;

如圖2,連接ACBD交于點E,連接OE,若OE2OA,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連結(jié)AC,過點D作DE⊥AC,垂足為E.

(1)求證:DC=BD;
(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y=﹣ x2+bx+c的對稱軸是x=2,且經(jīng)過點(6,0).

(1)求拋物線C1的解析式;
(2)將拋物線C1向下平移2個單位后得到拋物線C2 , 如圖,直線y=kx﹣2k+1交拋物線C2于A,B兩點(點A在點B的左邊),交拋物線C2的對稱軸于點C,M(xA , 3),xA表示點A橫坐標,求證:AC=AM;
(3)在(2)的條件下,請你參考(2)中的結(jié)論解決下列問題:
①若CM=AM,求 的值;
②請你探究:在拋物線C2上是否存在點P,使得PO+PC取得最小值?如果存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案