【題目】桌面上有四張正面分別標(biāo)有數(shù)字,,,的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗勻.

(1)隨機(jī)翻開一張卡片,正面所標(biāo)數(shù)字大于的概率為 ;

(2)隨機(jī)翻開一張卡片,從余下的三張卡片中再翻開一張,求翻開的兩張卡片正面所標(biāo)數(shù)字之和是偶數(shù)的概率.

【答案】(1);(2).

【解析】

試題分析:(1)直接根據(jù)概率公式即可求解;(2)根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果,根據(jù)概率公式即可求得答案.

試題解析:

(1);

(2)翻開的兩張卡片正面所標(biāo)數(shù)字之和是偶數(shù)記為事件A,用樹狀圖列出翻開的兩張卡片正面所標(biāo)數(shù)字的所有可能的結(jié)果如下:

從上圖可以看出,翻開的兩張卡片,其正面所標(biāo)數(shù)字之和共有12種結(jié)果,且每種結(jié)果都是等可能的,其中事件A包含4種可能的結(jié)果,所以.

答:翻開的兩張卡片正面所標(biāo)數(shù)字之和是偶數(shù)的概率是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對(duì)角線BDx軸,反比例函數(shù)的圖象經(jīng)過矩形對(duì)角線的交點(diǎn)E,若點(diǎn)A(20),D(04),則k的值為( )

A.16B.20C.32D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;;根據(jù)上面等式的規(guī)律:

1)寫出第6個(gè)和第n個(gè)等式;

2)證明你寫的第n個(gè)等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開圖為如圖所示的扇形.將扇形沿折疊,使點(diǎn)恰好落在上的點(diǎn),則弧長與圓錐的底面周長的比值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠疫情期間,某醫(yī)藥器材經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批甲、乙兩種型號(hào)的口罩,若購進(jìn)2箱甲型口罩和1箱乙型口罩,共需要資金2800元;若購進(jìn)3箱甲型口罩和2箱乙型口罩,共需要資金4600元.

1)求甲、乙型號(hào)口罩每箱的進(jìn)價(jià)為多少元?

2)該醫(yī)藥器材經(jīng)銷商計(jì)劃購進(jìn)甲、乙兩種型號(hào)的口罩用于銷售,預(yù)汁用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩種型號(hào)口罩共20箱,請(qǐng)問有幾種進(jìn)貨方案?并寫出具體的進(jìn)貨方案;

3)若銷售一箱甲型口罩,利潤率為40%,乙型口罩的售價(jià)為每箱1280元.為了促銷,公司決定每售出一箱乙型口罩,返還顧客現(xiàn)金元,而甲型口罩售價(jià)不變,要使(2)中所有方案獲利相同,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象過點(diǎn)(﹣2,0),對(duì)稱軸為直x1線,下列結(jié)論中:①abc0;②若Ax1,m),Bx2,m)是拋物線上的兩點(diǎn),當(dāng)xx1+x2時(shí),yc;③若方程ax+2)(4x)=﹣2的兩根為x1x2,且x1x2,則﹣2x1x24;④(a+c2b2;一定正確的是______(填序號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

1)如圖1,在△ABC和△CDE中,ABACECED,∠BAC=∠CED,請(qǐng)?jiān)趫D中作出與△BCD相似的三角形.

遷移應(yīng)用:

2)如圖2E為正方形ABCD內(nèi)一點(diǎn),∠DEB135°,在DE上取一點(diǎn)G,使得BEEG,延長BEAG于點(diǎn)F,求AFFG的值.

聯(lián)系拓展:

3)矩形ABCD中,AB6AD8,P、E分別是AC、BC上的點(diǎn),且四邊形PEFD為矩形,若△PCD是等腰三角形時(shí),直接寫出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過三點(diǎn).

1)求兩點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)的值最大時(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案