【題目】有這樣一道題:計(jì)算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=-,y=-2.甲同學(xué)把“x=-”錯(cuò)抄成“x=”.但他計(jì)算的結(jié)果是正確的,請你分析這是什么原因.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連結(jié)AF,CE,則下列結(jié)論:①CF=AE;②OE=OF;③DE=BF;④圖中共有四對全等三角形.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某制造企業(yè)有一座對生產(chǎn)設(shè)備進(jìn)行水循環(huán)冷卻的冷卻塔,冷卻塔的頂部有一個(gè)進(jìn)水口,3小時(shí)恰好可以注滿這座空塔,底部有一個(gè)出水口,7小時(shí)恰好可以放完滿塔的水.為了保證安全,塔內(nèi)剩余水量不得少于全塔水量的 ,出水口一直打開,保證水的循環(huán),進(jìn)水口根據(jù)水位情況定時(shí)對冷卻塔進(jìn)行補(bǔ)水.假設(shè)每次恰好在剩余水量為滿水量的m倍時(shí)開始補(bǔ)水,補(bǔ)滿后關(guān)閉進(jìn)水口.
(1)當(dāng)m= 時(shí),請問:兩次補(bǔ)水之間相隔多長時(shí)間?每次補(bǔ)水需要多長時(shí)間?
(2)能否找到適當(dāng)?shù)膍值,使得兩次補(bǔ)水的間隔時(shí)間和每次的補(bǔ)水時(shí)間一樣長?如果能,請求出m值;如果不能,請你分析兩次補(bǔ)水的間隔時(shí)間和每次的補(bǔ)水時(shí)間之間的數(shù)量關(guān)系,并表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo)A1 ________________.
(2)畫出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo)A2__________________.
(3) △ABC是否為直角三角形?答_________(填是或者不是).
(4)利用格點(diǎn)圖,畫出BC邊上的高AD,并求出AD的長,AD=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魔術(shù)師為大家表演魔術(shù).他請觀眾想一個(gè)數(shù),然后將這個(gè)數(shù)按以下步驟操作:
魔術(shù)師立刻說出觀眾想的那個(gè)數(shù).
(1)如果小明想的數(shù)是-1,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是 ;
(2)如果小聰想了一個(gè)數(shù)并告訴魔術(shù)師結(jié)果為93,那么魔術(shù)師立刻說出小聰想的那個(gè)數(shù)是 ;
(3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說出他們想的那個(gè)數(shù),若設(shè)一位觀眾想的數(shù)為a時(shí),你能發(fā)現(xiàn)其中的奧妙嗎?(請用式子或文字簡單描述其中的規(guī)律)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊點(diǎn).D的對應(yīng)點(diǎn)為D′.
(1)求點(diǎn)D′剛好落在對角線AC上時(shí),D′C的長;
(2)求點(diǎn)D′剛好落在此對稱軸上時(shí),線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的ABC中,按以下步驟作圖:
①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;
②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A.90°
B.95°
C.100°
D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).
(1)求AD的長及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P,Q,C為頂點(diǎn)的三角形與ADE相似?
(3)點(diǎn)N在拋物線對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.紙上有5個(gè)邊長為1的小正方形組成的紙片,可把它剪拼成一個(gè)正方形(圖2)
(圖3)
拼成的正方體的面積與邊長分別是多少?
你能把這十個(gè)小正方體組成的圖形紙(圖3),剪拼成一個(gè)大正方形嗎?若能,則請畫出剪拼成的大正方形,并求出其邊長為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com