【題目】如圖,拋物線y=﹣ x2+bx+c經(jīng)過A(﹣1,0),B(0,2)兩點,將△OAB繞點B逆時針旋轉(zhuǎn)90°后得到△O′A′B′,點A落到點A′的位置.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)將拋物線沿y軸平移后經(jīng)過點A′,求平移后所得拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后所得拋物線與y軸的交點為C,若點P在平移后的拋物線上,且滿足△OCP的面積是△O′A′P面積的2倍,求點P的坐標(biāo);
(4)設(shè)(2)中平移后所得拋物線與y軸的交點為C,與x軸的交點為D,點M在x軸上,點N在平移后所得拋物線上,直接寫出以點C,D,M,N為頂點的四邊形是以CD為邊的平行四邊形時點N的坐標(biāo).
【答案】
(1)
解:如圖1,把A(﹣1,0),B(0,2)兩點坐標(biāo)代入y=﹣ x2+bx+c得:
,
解得: ,
∴拋物線對應(yīng)的函數(shù)關(guān)系式:y=﹣ x2+ x+2
(2)
解:如圖2,∵A(﹣1,0),B(0,2),
∴OA=1,OB=2,
由旋轉(zhuǎn)得:O′B=OB=2,O′A′=OA=1,且旋轉(zhuǎn)角∠OBO′=90°,
∴O′(2,2),A′(2,1),
所以由原拋物線從O′平移到A′可知,拋物線向下平移1個單位,
∴平移后所得拋物線對應(yīng)的函數(shù)關(guān)系式:y=﹣ x2+ x+1
(3)
解:設(shè)P(a,﹣ a2+ a+1),
y=﹣ x2+ x+1,
當(dāng)x=0時,y=1,
∴OC=A′O′=1,
根據(jù)點A(2,2)可分三種情況:
①當(dāng)a>2時,如圖3,
∵S△OCP=2S△O′A′P,
∴ ×1×a=2× ×1×(a﹣2),
a=4,
則y=﹣ a2+ a+1=﹣ ×42+ ×4+1=﹣ ,
∴P(4,﹣ ),
②當(dāng)0<a<2時,如圖4,
∵S△OCP=2S△O′A′P,
∴ ×1×a=2× ×1×(2﹣a),
a= ,
則y=﹣ a2+ a+1=﹣ × 2+ × +1= ,
∴P( , ),
③當(dāng)a<0時,如圖5,
同理得: ×1×(﹣a)=2× ×(﹣a+2),
a=4(不符合題意,舍),
綜上所述,點P的坐標(biāo)為(4,﹣ )或( , )
(4)
解:設(shè)N(m,﹣ m2+ m+1),
如圖6,過N作NE⊥x軸于E,
∵四邊形CMND是平行四邊形,
∴CD∥MN,CD=MN,
∴∠CDO=∠MEN,
∵∠COD=∠MEN=90°,
∴△COD≌△NEM,
∴EN=CO,
∴ m2﹣ m﹣1=1,
解得:m=3或﹣1,
當(dāng)m=3時,y=﹣1,
當(dāng)m=﹣1時,y=﹣1,
∴N(3,﹣1)或(﹣1,﹣1),
如圖7就是點N(﹣1,﹣1)時,所成的平行四邊形;
如圖8和如圖9,
∵四邊形CDMN是平行四邊形,
∴CN∥DM,
∴點C與點N是對稱點,
∵C(0,1),對稱軸是x=﹣ =1,
∴N(2,1),
綜上所述,點N的坐標(biāo)為(3,﹣1)或(﹣1,﹣1)或(2,1).
【解析】(1)如圖1,利用待定系數(shù)法求二次函數(shù)的關(guān)系式;(2)如圖2,根據(jù)旋轉(zhuǎn)得出點O′(2,2),A′(2,1),知道原拋物線從向下平移1個單位得到新拋物線,根據(jù)原拋物線的關(guān)系式可以寫出新拋物線的函數(shù)關(guān)系式;(3)設(shè)P(a,﹣ a2+ a+1),根據(jù)點P的位置和A′的橫坐標(biāo)2可以分為三種情況:①當(dāng)a>2時,如圖3,②當(dāng)0<a<2時,如圖4,③當(dāng)a<0時,如圖5,分別根據(jù)S△OCP=2S△O′A′P , 列等式求出a的值,并求出對應(yīng)P的坐標(biāo);(4)如圖6,因為點N在平移后所得拋物線上,所以設(shè)N(m,﹣ m2+ m+1),作輔助線,構(gòu)建全等三角形,發(fā)現(xiàn)點N的縱坐標(biāo)的絕對值為1,由此列式為: m2﹣ m﹣1=1,解出m的值,求出點N的坐標(biāo).同理如圖7得出點N的坐標(biāo).
如圖8和9,點C與點N是對稱點,根據(jù)點C的坐標(biāo)求點N的坐標(biāo).
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結(jié)論正確的是( )
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“今天你光盤了嗎?”這是國家倡導(dǎo)“厲行節(jié)約,反對浪費”以來的時尚流行語.某校團委隨機抽取了部分學(xué)生,對他們進行了關(guān)于“光盤行動”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計圖:
根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計圖補充完整;
(3)請你估計該校1200名學(xué)生中對“光盤行動”持贊成態(tài)度的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對稱軸是x=1,有以下四個結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=4,BD平分∠ABC,過點A作AD⊥BD于點D,過點D作DE∥CB,分別交AB、AC于點E、F,若EF=2DF,則AB的長為( 。
A. 4 B. 6 C. 8 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長BC和DC′交于點E,則四邊形ACEC′的形狀是 .
(2)創(chuàng)新小組將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請證明這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個點上跳,若它停在奇數(shù)點上,則下一次沿順時針方向跳兩個點;若停在偶數(shù)點上,則下一次沿逆時針方向跳一個點,若青蛙從4這點開始跳,則經(jīng)2015次跳后它停在數(shù)對應(yīng)的點上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com