【題目】如圖,直線ABCD相交于點OOE平分∠BOD

1)若∠AOC60°,求∠BOE的度數(shù);

2)若OF平分∠AOD,試說明OEOF

【答案】1)∠BOE30°;(2)見解析.

【解析】

1)由對頂角的性質(zhì)可得∠BOD的度數(shù),利用角平分線的性質(zhì)即可得出∠BOE的度數(shù);(2)由角平分線的性質(zhì)可得∠DOFAOD,∠DOEBOD,利用平角的定義可求出∠EOF的度數(shù),根據(jù)垂直的定義即可得答案.

1)∵直線AB、CD相交于點O,

∴∠BOD=∠AOC60°,

又∵OE平分∠BOD,

∴∠BOEBOD30°;

2)∵OF平分∠AOD,

∴∠DOFAOD

又∵OE平分∠BOD,

∴∠DOEBOD

∴∠EOF=∠DOF+DOE

(∠AOD+BOD

×180°

90°

OEOF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知OM⊥ON,斜邊長為4的等腰直角△ABC的斜邊AC在射線上,頂點C與O重合,若點A沿NO方向向O運動,△ABC的頂點C隨之沿OM方向運動,點A移動到點O為止,則直角頂點B運動的路徑長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為( ,﹣2);⑤當x< 時,y隨x的增大而減小;⑥a+b+c>0正確的有( )

A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A1B1C,使CB1∥AD,分別延長AB、CA1相交于點D,則線段BD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在折線ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延長AB、GF交于點M.試探索∠AMG與∠3的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:
一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù) ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點M為邊AD的中點,過點CAB的垂線交AB于點E,連接ME,已知AM2AE4,∠BCE30°.

1)求平行四邊形ABCD的面積S;

2)求證:∠EMC2AEM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,

(1)試證明:DE=BF;
(2)連接DF,BE,猜想DF與BE的關(guān)系?并證明你的猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為

查看答案和解析>>

同步練習冊答案