【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù) 的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

【答案】
(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),
∵F為AB的中點(diǎn),∴F(6,2),
又∵點(diǎn)F在反比例函數(shù) (k>0)的圖象上,∴k=12,
∴該函數(shù)的解析式為y= (x>0)
(2)解:由題意知E,F(xiàn)兩點(diǎn)坐標(biāo)分別為E( ,4),F(xiàn)(6, ),

=
=
=
= ,
∴當(dāng)k=12時(shí),S有最大值.S最大=3
【解析】)當(dāng)F為AB的中點(diǎn)時(shí),點(diǎn)F的坐標(biāo)為(3,1),由此代入求得函數(shù)解析式即可;根據(jù)圖中的點(diǎn)的坐標(biāo)表示出三角形的面積,得到關(guān)于k的二次函數(shù),利用二次函數(shù)求出最值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如32=(12,善于思考的小明進(jìn)行了以下探索:設(shè)ab=(mn2(其中ab,m,n均為正整數(shù)),則有abm22n22mn,∴am22n2,b2mn

這樣小明就找到了一種把ab的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

1)當(dāng)ab,m,n均為正整數(shù)時(shí),若ab=(mn2,用含m,n的式子分別表示ab,得a b ;

2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:42 =(1 2;(答案不唯一)

3)若a4=(mn2,且a,m,n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出)

學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情形進(jìn)行研究.

(初步思考)

我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC△DEF中,AC=DFBC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角三種情況進(jìn)行探究.

(深入探究)

第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF

1)如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF

2)如圖,在△ABC△DEFAC=DF,BC=EF∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF

第三種情況:當(dāng)∠B是銳角時(shí),△ABC△DEF不一定全等.

3)在△ABC△DEFAC=DF,BC=EF∠B=∠E,且∠B∠E都是銳角,請(qǐng)你用尺規(guī)在圖中作出△DEF,使△DEF△ABC不全等.(不寫作法,保留作圖痕跡)

4∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC,BC邊上,C,D兩點(diǎn)不重合,設(shè)CD的長(zhǎng)度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如圖所示放置,點(diǎn)A1A2,A3C1C2,C3,分別在直線y=x+1x軸上,則點(diǎn)B2020的縱坐標(biāo)是_____,點(diǎn)Bn的縱坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某森林公園從正門到側(cè)門有一條公路供游客運(yùn)動(dòng),甲徒步從正門出發(fā)勻速走向側(cè)門,出發(fā)一段時(shí)間開始休息,休息了0.6小時(shí)后仍按原速繼續(xù)行走.乙與甲同時(shí)出發(fā),騎自行車從側(cè)門勻速前往正門,到達(dá)正門后休息0.2小時(shí),然后按原路原速勻速返回側(cè)門.圖中折線分別表示甲、乙到側(cè)門的路程y(km)與甲出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.根據(jù)圖象信息解答下列問(wèn)題.

(1)求甲在休息前到側(cè)門的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.

(2)求甲、乙第一次相遇的時(shí)間.

(3)直接寫出乙回到側(cè)門時(shí),甲到側(cè)門的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu). 經(jīng)調(diào)查:購(gòu)買3臺(tái)甲型設(shè)備比購(gòu)買2臺(tái)乙型設(shè)備多花16萬(wàn)元,購(gòu)買2臺(tái)甲型設(shè)備比購(gòu)買3臺(tái)乙型設(shè)備少花6萬(wàn)元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購(gòu)買節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的中線BE,CF相交于點(diǎn)G,P、Q分別是BGCG的中點(diǎn).

(1)求證:四邊形EFPQ是平行四邊形;

(2)請(qǐng)直接寫出BGGE的數(shù)量關(guān)系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)分別是邊、的中點(diǎn),延長(zhǎng),使得,連接、

1)求證:四邊形是菱形;

2)當(dāng),時(shí),判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案