【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論: ①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正確結(jié)論的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

【答案】B
【解析】解:∵拋物線和x軸有兩個(gè)交點(diǎn), ∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正確;
∵對(duì)稱軸是直線x=﹣1,和x軸的一個(gè)交點(diǎn)在點(diǎn)(0,0)和點(diǎn)(1,0)之間,
∴拋物線和x軸的另一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,
∴把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,
∴4a+c>2b,∴②錯(cuò)誤;
∵把x=1代入拋物線得:y=a+b+c<0,
∴2a+2b+2c<0,
∵﹣ =﹣1,
∴b=2a,
∴3b+2c<0,∴③正確;
∵拋物線的對(duì)稱軸是直線x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正確;
即正確的有3個(gè),
故選:B.
利用二次函數(shù)圖象的相關(guān)知識(shí)與函數(shù)系數(shù)的聯(lián)系,需要根據(jù)圖形,逐一判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的中線,BEABD的中線.

1ABE=15°BAD=40°,求∠BED的度數(shù);

2作圖:在BED中作出BD邊上的高EFBE邊上的高DG;

3)若ABC的面積為40,BD=5,則BDE BD邊上的高EF為多少?若BE=6,求BEDBE邊上的高DG為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,tanB= , cosC= , AC= . 求:
(1)BC的長(zhǎng);
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,.解決下列問(wèn)題:

1= ,,=

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知,滿足方程組,求,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一種商品,單價(jià)30元,試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量夕與每件的銷(xiāo)售價(jià)滿足關(guān)系:=100-2若商店每天銷(xiāo)售這種商品要獲得200元的銷(xiāo)售利潤(rùn),那么每件商品的售價(jià)應(yīng)定為多少元?每天要售出這種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題背景:已知,如圖1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,AB=a,△ABC的面積為S,則有BC=a,S=a2

(2)遷移應(yīng)用:如圖2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.

求證:△ADB≌△AEC;

∠ADB的度數(shù).

AD=2,BD=4,求△ABC的面積.

(3)拓展延伸:如圖3,在等腰△ABC中,∠BAC=120°,在∠BAC內(nèi)作射線AM,點(diǎn)D與點(diǎn)B關(guān)于射線AM軸對(duì)稱,連接CD并延長(zhǎng)交AM于點(diǎn)E,AF⊥CDF,連接AD,BE.

∠EAF的度數(shù);

CD=5,BD=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展文明禮儀演講比賽,八(1)班、八(2)班派出的5名選手的比賽成績(jī)?nèi)鐖D所示.

(1)根據(jù)上圖,完成表格.

平均數(shù)

中位數(shù)

方差

(1)

75

_______

_______

(2)

75

70

160

(2)結(jié)合兩班選手成績(jī)的平均數(shù)和方差,分析兩個(gè)班級(jí)參加比賽的選手的成績(jī).

(3)如果在每班參加比賽的選手中分別選出3人參加決賽,從平均分看,你認(rèn)為哪個(gè)班的實(shí)力更強(qiáng)一些?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)對(duì)課本中《硬幣滾動(dòng)中的數(shù)學(xué)》的學(xué)習(xí),我們知道滾動(dòng)圓滾動(dòng)的周數(shù)取決于滾動(dòng)圓的圓心運(yùn)動(dòng)的路程(如圖①).在圖②中,有2014個(gè)半徑為r的圓緊密排列成一條直線,半徑為r的動(dòng)圓C從圖示位置繞這2014個(gè)圓排成的圖形無(wú)滑動(dòng)地滾動(dòng)一圈回到原位,則動(dòng)圓C自身轉(zhuǎn)動(dòng)的周數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案