【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點(diǎn)A(1,8)、B(﹣4,m).
(1)求k1、k2、b的值;
(2)求△AOB的面積;
(3)若M(x1 , y1)、N(x2 , y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2 , y1<y2 , 指出點(diǎn)M、N各位于哪個(gè)象限,并簡要說明理由.
【答案】
(1)
解:∵反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點(diǎn)A(1,8)、B(﹣4,m),
∴k1=8,B(﹣4,﹣2),
解,解得;
(2)
解:由(1)知一次函數(shù)y=k2x+b的圖象與y軸的交點(diǎn)坐標(biāo)為C(0,6),
∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;
(3)
解∵比例函數(shù)y=的圖象位于一、三象限,
∴在每個(gè)象限內(nèi),y隨x的增大而減小,
∵x1<x2,y1<y2,
∴M,N在不同的象限,
∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.
【解析】(1)先把A點(diǎn)坐標(biāo)代入y=可求得k1=8,則可得到反比例函數(shù)解析式,再把B(﹣4,m)代入反比例函數(shù)求得m,得到B點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定一次函數(shù)解析式即可求得結(jié)果;
(2)由1知一次函數(shù)y=k2x+b的圖象與y軸的交點(diǎn)坐標(biāo)為(0,6),可求S△AOB=×6×2+×6×1=15;
(3)根據(jù)反比例函數(shù)的性質(zhì)即可得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達(dá)A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數(shù)關(guān)系式(不寫過程);
(2)①求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
②根據(jù)圖象判斷,x取何值時(shí),y乙>y甲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m+1)x2-|m|+n+4.
(1)當(dāng)m,n為何值時(shí),此函數(shù)是一次函數(shù)?
(2)當(dāng)m,n為何值時(shí),此函數(shù)是正比例函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(測角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
(1)求點(diǎn)B
距水平面AE的高度BH;
(2)求廣告牌CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過程:
解:設(shè)a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學(xué)因式分解的結(jié)果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請(qǐng)你直接寫出因式分解的最后結(jié)果:________;
(3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由甲A地到B地的路線圖(箭頭表示行進(jìn)的方向).其中E為AB的中點(diǎn),AH>HB,判斷三人行進(jìn)路線長度的大小關(guān)系為
A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn),觀察并猜想線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的兩個(gè)頂點(diǎn)A , D分別在x軸和y軸上,CE⊥y軸于點(diǎn)E , OA=2,∠ODA=30°.若反比例函數(shù)y= 的圖象過CE的中點(diǎn)F , 則k的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com