【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:

(1)請你以火車站為原點建立平面直角坐標系.

(2)寫出市場的坐標為   ;超市的坐標為   

(3)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將此三角形向下平移4個單位長度,畫出平移后的△A1B1C1,并求出其面積.

【答案】(1)作圖見解析;(2)(4,3);(2,-3);(3)7.

【解析】

1)以火車站為原點建立直角坐標系即可;

(2)根據(jù)平面直角坐標系寫出點的坐標即可;

(3)根據(jù)題目要求畫出三角形,利用矩形面積減去四周多余三角形的面積即可.

1)如圖所示:

2)市場坐標(4,3),超市坐標(2,-3);

3)如圖所示:

A1B1C1的面積=3×6-×2×2-×4×3-×6×1=7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一.為了倡導(dǎo)節(jié)約用水從我做起,小剛在他所在班的50名同學中,隨機調(diào)查了10名同學家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖

1】求這10個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

2】根據(jù)樣本數(shù)據(jù),估計小剛所在班50名同學家庭中月均用水量不超過7 t的約有多少戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A=60°,BEAC,垂足為E,CFAB,垂足為F,點DBC的中點.

(1)求證:DEDF;

(2)試猜想DEF是不是等邊三角形?如果是,請加以證明;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒2°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒4°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時間為t(0秒≤t≤90秒).

(1)用含t的代數(shù)式表示MOA的度數(shù).

(2)在運動過程中,當AOB第二次達到60°時,求t的值.

(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請直接寫出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDAE平分∠CABCD于點E.若∠C比∠AED55°,則∠AED的度數(shù)為(  )

A. 55° B. 125° C. 135° D. 140°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.
解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=cm,BAC=120°,點PBC上從CB運動,點QAB、AC上沿B→A→C運動,點P、Q分別從點C、B同時出發(fā),速度均為1cm/s,當其中一點到達終點時兩點同時停止運動,則當運動時間t=_____s時,PAQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點A、B、C,完成系列問題:

(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.

(2)在數(shù)軸上找到點E,使點EA、C兩點的距離相等.并在數(shù)軸上標出點E表示的數(shù).

(3)在數(shù)軸上有一點F,滿足點F到點A與點F到點C的距離和是9,則點F表示的數(shù)是   

查看答案和解析>>

同步練習冊答案