【題目】已知:線段AB,BC.
求作:平行四邊形ABCD.
以下是甲、乙兩同學的作業(yè).
甲:
①以點C為圓心,AB長為半徑作。
②以點A為圓心,BC長為半徑作;
③兩弧在BC上方交于點D,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖1)
乙:
①連接AC,作線段AC的垂直平分線,交AC于點M;
②連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖2)
老師說甲、乙同學的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在水平桌面上的兩個“E”,當點P1,P2,O在一條直線上時,在點O處用①號“E”測得的視力與用②號“E”測得的視力相同.
(1)圖中b1,b2,l1,l2滿足怎樣的關系式?
(2)若b1=3.2 cm,b2=2 cm,①號“E”的測量距離l1=8 cm,要使測得的視力相同,則②號“E”的測量距離l2應為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y= (k>0)交于A,B兩點,且點A的橫坐標為4.點C是雙曲線上一點,且縱坐標為8,則△AOC的面積為( )
A. 8 B. 32 C. 10 D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形ABC在直角坐標系中.
(1)請直接寫出點A、C兩點的坐標:
(2)三角形ABC的面積是 ;
(3)若把三角形ABC向上平移1個單位,再向右平移1個單位得三角形A′B′C′在圖中畫出三角形A′B′C’,這時點B′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應點D′的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“穿十條馬路連遇十次紅燈”是不可能事件
B.任意畫一個三角形,其內(nèi)角和是180°是必然事件
C.某彩票中獎概率為1%,那么買100張彩票一定會中獎
D.“福山福地福人居”這句話中任選一個漢字,這個字是“!弊值母怕适
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線在同一平面內(nèi)有平行和相交兩種位置關系,線段首尾連接可以變換出很多不同的圖形,這些不同的角又有很多不同關系,今天我們就來探究一下這些奇妙的圖形吧!
(問題探究)
(1)如圖1,請直接寫出∠A+∠B+∠C+∠D+∠E= ;
(2)將圖1變形為圖2,∠A+∠DBE+∠C+∠D+∠E的結果如何?請寫出證明過程;
(3)將圖1變形為圖3,則∠A+∠B+∠C+∠D+∠E的結果如何?請寫出證明過程.
(變式拓展)
(4)將圖3變形為圖4,已知∠BGF=160°,那么∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一次函數(shù)(為常數(shù))的圖象與反比例函數(shù)(為常數(shù),且<0)的圖象交于A,B兩點.
(1) 如圖①,當,時,
① A ( , ),B ( , );
②直接寫出使成立的的取值范圍;
(2) 如圖②,將(1)中直線AB向下平移,交反比例函數(shù)圖像于點C,D,連接OC,AC,若△AOC的面積為8,求的值;
(3) 若A,B兩點的橫坐標分別為,,且,滿足,證明:2m-b=-3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com