【題目】如圖所示,在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,則∠AEF的大小是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了更好地開展“陽光體育一小時”活動,對本校學(xué)生進行了“寫出你最喜歡的體育活動項目(只寫一項)”的隨機抽樣調(diào)查,下面是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計圖的一部分.
抽樣調(diào)查學(xué)生最喜歡的運動項目的人數(shù)統(tǒng)計圖 各運動項目的喜歡人數(shù)占抽樣總?cè)藬?shù)百分比統(tǒng)計圖
請根據(jù)以上信息解答下列問題:
(1)該校對________名學(xué)生進行了抽樣調(diào)查;
(2)請將圖1和圖2補充完整;
(3)圖2中跳繩所在的扇形對應(yīng)的圓心角的度數(shù)是________;
(4)若該校共有2400名同學(xué),請利用樣本數(shù)據(jù)估計全校學(xué)生中最喜歡跳繩運動的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標系內(nèi)兩點A、B,點,點B與點A關(guān)于y軸對稱.
(1)則點B的坐標為________;
(2)動點P、Q分別從A點、B點同時出發(fā),沿直線AB向右運動,同向而行,點P的速度是每秒4個單位長度,點Q的速度是每秒2個單位長度,設(shè)P、Q的運動時間為t秒,用含t的代數(shù)式表示的面積S,并寫出t的取值范圍;
(3)在平面直角坐標系中存在一點,滿足.求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖,在△中,把繞點按順時針方向旋轉(zhuǎn)得到,把繞點按逆時針方向旋轉(zhuǎn)得到,連接,當時,我們稱△是△的“旋補三角形”,△邊上的中線叫做的“旋補中線”,點叫做“旋補中心”.
⑴ 特例感知:在如圖、如圖中,是的“旋補三角形”,是的“旋補中線”.
① 如圖,當為等邊三角形時,與的數(shù)量關(guān)系為= ;
② 如圖,當,時,則長為 .
⑵ 精確作圖:如圖,已知在四邊形內(nèi)部存在點,使得是的“旋補三角形”(點D的對應(yīng)點為點A,點C的對應(yīng)點為點B),請用直尺和圓規(guī)作出點(要求:保留作圖痕跡,不寫作法和證明)
⑶ 猜想論證:在如圖中,當△為任意三角形時,猜想與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,EF交AB于E,交CD于F,∠AEF=68°,FG平分∠EFD,KF⊥FG,求∠KFC的度數(shù).
解:∵AB∥CD(已知)
∴∠EFD=∠AEF( )
∵∠AEF=68°(已知)
∴∠EFD=∠AEF=68°( )
∵FG平分∠EFD(已知)
所以∠EFG=∠GFD=∠EFD=34°( )
又因為KF⊥FG( )
所以∠KFG=90°( )
所以∠KFC=180°-∠GFD-∠KFG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠3=∠E.則AD與BE平行嗎?
完成下面的解答過程(填寫理由或數(shù)學(xué)式).
解:∵∠1=∠2(已知),
∴ ∥ (內(nèi)錯角相等,兩直線平行),
∴∠E=∠ (兩直線平行,內(nèi)錯角相等),
又∵∠E=∠3(已知),
∴∠3=∠ (等量代換),
∴AD∥BE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=9.將矩形紙片折疊,使點B和點D重合.
(1)求ED的長;
(2)求折痕EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com