【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,求EE′的長?并求出∠BE′C的度數(shù)?
【答案】 135°
【解析】
首先根據(jù)旋轉(zhuǎn)的性質(zhì)得出,△EBE′是直角三角形,得到EE′=BE,進(jìn)而得出∠BEE′=∠BE′E=45°,即可得出答案.
解:連接EE′,如圖,
∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE′,
∴BE=BE′=2,AE=CE′=1,∠EBE′=90°,
∴△BEE′為等腰直角三角形,
∴EE′=BE=2,∠BE′E=45°,
在△CEE′中,CE=3,CE′=1,EE′=2,
∵12+(2)2=32,
∴CE′2+EE′2=CE2,
∴△CEE′為直角三角形,
∴∠EE′C=90°,
∴∠BE′C=∠BE′E+∠CE′E=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________ .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直接寫出結(jié)果:(1)-1+1=_____;(2)3-7=_____;
(3)4÷=_____;(4)-7×0.5=_____;(5)(-2)3=_____;
(6)(-1)2n=_______(n為正整數(shù));(7)4x=0的解是_____;
(8)x=4 的解是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料做了寬為1米的兩扇小門.
(1)設(shè)花圃的一邊AB長為x米,請(qǐng)你用含x的代數(shù)式表示另一邊AD的長為 米;
(2)若此時(shí)花圃的面積剛好為45m2,求此時(shí)花圃的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行階梯式計(jì)量水價(jià).每戶每月用水量不超過25噸,收
費(fèi)標(biāo)準(zhǔn)為每噸a元;若每戶每月用水量超過25噸時(shí),其中前25噸還是每噸a元,超出的部
分收費(fèi)標(biāo)準(zhǔn)為每噸b元.下表是小明家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)
據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 16 | 18 | 30 | 35 |
水費(fèi)(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32噸,則應(yīng)繳水費(fèi) 元;
(3)若小明家六月份應(yīng)繳水費(fèi)102.5元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,∠BAC的平分線交BC于D,過點(diǎn)C作CG⊥AB于G,交AD于E,過點(diǎn)D作DF⊥AB于F.下列結(jié)論①∠CED= ;②;③∠ADF= ;④CE=DF.正確的是( )
A. ①②④ B. ②③④ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有330臺(tái)機(jī)器要運(yùn)送到外地,計(jì)劃租用甲、乙兩種貨車.已知甲種貨車每輛租金400元,乙種貨車每輛租金280元,若租用3輛甲種貨車和2輛乙種貨車,可運(yùn)送195臺(tái)機(jī)器;若租用4輛甲種貨車和1輛乙種貨車,可運(yùn)送210臺(tái)機(jī)器;
(1)求每輛甲種貨車和乙種貨車能運(yùn)送的機(jī)器數(shù)量;
(2)請(qǐng)給出一次性將機(jī)器運(yùn)送到目的地的最節(jié)省費(fèi)用的租車方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形ABC向右平移5個(gè)單位長度,再向上平移3個(gè)單位長度請(qǐng)回答下列問題:
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1 ,B1 ,C1 ;
(2)畫出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com