先化簡,再求值.(a+b)(a-b)+b(a+2b)-b2,其中a=1,b=-2.
考點:整式的混合運算—化簡求值
專題:
分析:先利用平方差公式和整式的乘法計算,再合并化簡,最后代入求得數(shù)值即可.
解答:解:原式=a2-b2+ab+2b2-b2
=a2+ab,
當a=1,b=-2時
原式=1+(-2)=-1.
點評:此題考查代數(shù)式求值,注意先利用整式的乘法化簡,再代入求得數(shù)值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

拖拉機開始工作時,油箱中有油24L,若每小時耗油4L.則油箱中的剩油量y (L)與工作時間x(小時)之間的函數(shù)關(guān)系式的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九年級某班同學(xué)在畢業(yè)晚會中進行抽獎活動,在一個不透明的口袋中有三個完全相同的小球,把它們分別標號為1,2,3.隨機摸出一個小球記下標號后放回搖勻,再從中隨機摸出一個小球記下標號.
(1)請用列表或畫樹形圖的方法(只選其中一樣),表示兩次摸出小球上的標號的所有結(jié)果;
(2)規(guī)定當兩次摸出的小球標號相同時中獎,求中獎的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)-25+(
1
2
-4+(π-3)0
(2)(5x2y32÷(25x4y5
(3)-(-
1
4
-2-(-1)2006+(
2
3
11×(-
3
2
12
(4)(x+2y)2-2(x-y)(x+y)+2y(x-3y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實驗與探究:
三角點陣前n行的點數(shù)計算
如圖是一個三角點陣,從上向下數(shù)有無數(shù)多行,其中第一行有1個點,第二行有2個點…第n行有n個點…
容易發(fā)現(xiàn),10是三角點陣中前4行的點數(shù)的和,你能發(fā)現(xiàn)300是前多少行的點數(shù)的和嗎?
如果要用試驗的方法,由上而下地逐行的相加其點數(shù),雖然你能發(fā)現(xiàn)1+2+3+4+…+23+24=300.得知300是前24行的點數(shù)的和,但是這樣尋找答案需我們先探求三角點陣中前n行的點數(shù)的和與n的數(shù)量關(guān)系
前n行的點數(shù)的和是1+2+3+…+(n-2)+(n-1)+n,可以發(fā)現(xiàn).
2×[1+2+3+…+(n-2)+(n-1)+n]
=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把兩個中括號中的第一項相加,第二項相加…第n項相加,上式等號的后邊變形為這n個小括號都等于n+1,整個式子等于n(n+1),于是得到
1+2+3+…+(n-2)+(n-1)+n=
1
2
n(n+1)
這就是說,三角點陣中前n項的點數(shù)的和是
1
2
n(n+1)
下列用一元二次方程解決上述問題
設(shè)三角點陣中前n行的點數(shù)的和為300,則有
1
2
n(n+1)=300
整理這個方程,得:n2+n-600=0
解方程得:n1=24,n2=-25
根據(jù)問題中未知數(shù)的意義確定n=24,即三角點陣中前24行的點數(shù)的和是300.
請你根據(jù)上述材料回答下列問題:
(1)三角點陣中前n行的點數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說明道理.
(2)如果把圖中的三角點陣中各行的點數(shù)依次換成2、4、6、…、2n、…,你能探究出前n行的點數(shù)的和滿足什么規(guī)律嗎?這個三角點陣中前n行的點數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:(
1
2
-2-
4
+2sin30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四張背面完全相同的紙牌(如圖,用①、②、③、④表示),正面分別寫有四個不同的條件.小明將這4張紙牌背面朝上洗勻后,先隨機抽出一張(不放回),再隨機抽出一張.

(1)寫出兩次摸牌出現(xiàn)的所有可能的結(jié)果(用①、②、③、④表示);
(2)以兩次摸出的牌面上的結(jié)果為條件,求能判斷四邊形ABCD為平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,M、N分別是AD、BC的中點,BC=2CD.
(1)求證:四邊形MNCD是平行四邊形;
(2)求證:BD=
3
MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩人進行射擊測試,每人10次射擊成績的平均數(shù)都是8.5環(huán),方差分別是:S2=2,S2=1.5,則射擊成績較穩(wěn)定的是
 
(填“甲”或“乙“).

查看答案和解析>>

同步練習冊答案