【題目】如圖,CAB的垂直平分線EF上一點(diǎn),連接CACB.以BC為直角邊作RtBCD,且CBCD,ADEF于點(diǎn)HBHDC于點(diǎn)M

1)求證:∠HAC=∠HBC=∠HDC;

2)判斷DHB的形狀,并證明你的結(jié)論;

3)若DH1,AH7,則BC

【答案】(1)見解析;(2)DHB是直角三角形,理由見解析;(35

【解析】

1)根據(jù)垂直平分線的性質(zhì)和等邊對(duì)等角定理,可得到結(jié)論;

2)在△HMD和△CMB中,有一對(duì)對(duì)頂角相等,由(1)知∠HBC=∠HDC,故∠DHM=∠BCM=90°,所以△DHB是直角三角形;

3)先得出DH=AH=7,然后用兩次勾股定理,分別得到BDBC,從而得解.

1)證明:∵CAB的垂直平分線EF上一點(diǎn),

AC=BC,

∴∠CAB=∠CBA,

同理,∠HAB=∠HBA,

∴∠HAB-CAB=∠HBA-CBA即∠HAC=∠HBC

又∵CBCD,

AC=CD,

∴∠HAC=∠HDC,

∴∠HAC=∠HBC=∠HDC;

2)由已知得∠BCM=90°,

在△HMD和△CMB中,有一對(duì)對(duì)頂角相等,由(1)知∠HBC=∠HDC,

故∠DHM=∠BCM=90°

所以△DHB是直角三角形;

3)∵HAB的垂直平分線EF上一點(diǎn),

BH=AH=7,

在直角三角形DHB中,

,

在等腰直角三角形BCD中,

,

故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:

①AD=BE②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,AB的垂直平分線DEBC延長(zhǎng)線于E,ACF,A=40,AB+BC=6.

(1)BCF的周長(zhǎng)為多少?

(2)E的度數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)寫出陰影部分的面積是_________(寫成兩數(shù)平方差的形式);如圖,若將陰影部分裁剪下來,重新拼成一個(gè)矩形,它的面積是______(寫成多項(xiàng)式乘法的形式);

2)比較圖,圖陰影部分的面積,可以得到公式_________;

3)運(yùn)用你所得到的公式,計(jì)算下列各題:

;

②(2m+n-p)2m+n+p

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=CB,ABC=90°,FAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC,AE=CF.

(1)求證:RtABERtCBF

(2)若∠AEC=105°,求∠BCF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),作CDAB,垂足為D,E為弧BC的中點(diǎn),連接AE、BE,AECD于點(diǎn)F.

(1)求證:∠AEC=90°﹣2BAE;

(2)過點(diǎn)E作⊙O的切線,交DC的延長(zhǎng)線于G,求證:EG=FG;

(3)在(2)的條件下,若BE=4,CF=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項(xiàng)目進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,乒乓球部分所對(duì)應(yīng)的圓心角度數(shù)為_____;

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A20)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案