【題目】ABC,AB=CB,ABC=90°,FAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC,AE=CF.

(1)求證:RtABERtCBF

(2)若∠AEC=105°,求∠BCF的度數(shù).

【答案】(1)見解析;(2)BCF=15°.

【解析】

1)根據(jù)“HL”進(jìn)行證明即可;

2)利用三角形外角的性質(zhì)求出∠BAE的度數(shù),然后利用全等三角形的對(duì)應(yīng)角相等即可得出答案.

1)證明:∵∠ABC=90°

∴∠ABC=CBF=90°,

RtABERtCBF中,

,

RtABERtCBFHL);

2)解:∠BAE=AEC-ABC=105°-90°=15°,

RtABERtCBF,

∴∠BCF=BAE=15°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖在等邊三角形ABC中,線段AMBC邊上的中線,動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)填空:∠CAM   

2)若點(diǎn)D在線段AM上時(shí),求證:△ADC≌△BEC;

3)當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O,

當(dāng)點(diǎn)D在線段AM上時(shí),求∠AOB的度數(shù);

當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季空調(diào)銷售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺(tái),以后每天生產(chǎn)的空調(diào)都比前一天多2臺(tái),由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的空調(diào)數(shù)量達(dá)到50臺(tái)后,每多生產(chǎn)一臺(tái),當(dāng)天生產(chǎn)的所有空調(diào),平均每臺(tái)成本就增加20元.

(1)設(shè)第天生產(chǎn)空調(diào)臺(tái),直接寫出之間的函數(shù)解析式,并寫出自變量的取值范圍.

(2)若每臺(tái)空調(diào)的成本價(jià)(日生產(chǎn)量不超過50臺(tái)時(shí))為2000元,訂購(gòu)價(jià)格為每臺(tái)2920元,設(shè)第天的利潤(rùn)為元,試求之間的函數(shù)解析式,并求工廠哪一天獲得的利潤(rùn)最大,最大利潤(rùn)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CAB的垂直平分線EF上一點(diǎn),連接CA,CB.以BC為直角邊作RtBCD,且CBCD,ADEF于點(diǎn)H,BHDC于點(diǎn)M

1)求證:∠HAC=∠HBC=∠HDC;

2)判斷DHB的形狀,并證明你的結(jié)論;

3)若DH1,AH7,則BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因?yàn)?/span>,,所以的整數(shù)部分為2,小數(shù)部分為,請(qǐng)解答下列問題:

(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;

(2)已知,其中x是整數(shù),且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(2,0),B(6,2),C(6,6),

反比例函數(shù)y1=(x0)的圖象過點(diǎn)D,點(diǎn)P是一次函數(shù)y2=kx+3﹣3k(k0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn).

(1)若一次函數(shù)y2=kx+3﹣3k的圖象必經(jīng)過點(diǎn)E,則E點(diǎn)坐標(biāo)為______;

(2)對(duì)于一次函數(shù)y2=kx+3﹣3k(k0),當(dāng)yx的增大而增大時(shí),點(diǎn)P橫坐標(biāo)a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠BAC=90°,AB=AC.MN是過點(diǎn)A的直線,BDMN DCEMNE.

1)求證:BD=AE.

2)若將MN繞點(diǎn)A旋轉(zhuǎn),使MNBC相交于點(diǎn)G(如圖2),其他條件不變,求證:BD=AE.

3)在(2)的情況下,若CE的延長(zhǎng)線過AB的中點(diǎn)F(如圖3),連接GF,求證:∠AFE=BFG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,EAC的中點(diǎn),PAD上的一個(gè)動(dòng)點(diǎn),當(dāng)PCPE的和最小時(shí),∠CPE的度數(shù)是_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案