【題目】如圖,在菱形ABCD中,點(diǎn)F為對角線BD上一點(diǎn),點(diǎn)E為AB的延長線上一點(diǎn),DF=BE,CE=CF.求證:(1)△CFD≌△CEB;(2)∠CFE=60°.

【答案】(1)證明見解析;(2)∠CFE=60°.

【解析】(1)根據(jù)菱形的性質(zhì)得出CD=CB,又DF=BE,CF=CE,根據(jù)SSS即可證明△CFD≌△CEB;

(2)根據(jù)全等三角形、菱形的性質(zhì)得出∠ABD=∠CBD=∠CDB=∠CBE,由平角的定義求出∠ABD=∠CBD=60°,再證明∠FCE=60°,那么由CF=CE,得出△AFE是等邊三角形,于是∠CFE=60°.

證明:(1)∵四邊形 ABCD是菱形,∴CD=CB.

在△CFD和△CEB中, ∴△CFD≌△CEB.

(2)∵△CFD≌△CEB,∴∠CDB=CBE, ∠DCF=∠BCE.∵CD=CB,

∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°,∴∠DCB=60°,

∴∠FCE=∠FCB+∠BCE=∠FCB+∠DCF=60°.

又CF=CE,∴△CFE為等邊三角形,∴∠CFE=60°.

“點(diǎn)睛”本題考查了菱形的性質(zhì):①菱形具有平行四邊形的一般性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.也考查了全等三角形、等邊三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)2(x﹣1)+1=0

(2)4(2x﹣1)﹣3(5x+1)=14

(3)x﹣=1﹣

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形的內(nèi)角和隨著邊數(shù)的變化而變化.設(shè)多邊形的邊數(shù)為n,內(nèi)角和為N,則變量Nn之間的關(guān)系可以表示為N=(n-2)180°.例如:如圖四邊形ABCD的內(nèi)角和:N=A+B+C+D=(4-2)×180°=360°問:(1)利用這個(gè)關(guān)系式計(jì)算五邊形的內(nèi)角和;(2)當(dāng)一個(gè)多邊形的內(nèi)角和N=720°時(shí),求其邊數(shù)n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小芳在本學(xué)期的體育測試中,1分鐘跳繩獲得了滿分,她的滿分秘籍如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進(jìn)行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內(nèi)跳繩速度y(個(gè)/秒)與時(shí)間t(秒)關(guān)系的函數(shù)圖象大致為( 。

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD.若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為(  )

A. (﹣1, B. (﹣2, C. (﹣,1) D. (﹣,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距900km,一列快車從甲地開往乙地,一列慢車從乙地開往甲地,兩車同時(shí)出發(fā),行了4小時(shí)后兩車相遇,快車的速度是慢車速度的2倍.

(1)請求出慢車與快車的速度?

(2)兩車出發(fā)后多長時(shí)間,它們相距225千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算及解方程:

(1)-4-28-(-19)+(-24)

(2)-12-(-2)3-2(-3)

(3)(a+3b)-(a-b)

(4)3(m2-2n2)-2(m2-3n2)

(5)2(2x﹣3)﹣3=2﹣3(x﹣1)

(6)-1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道,|2-(-1)|表示2-1的差的絕對值,實(shí)際上位可理解為在數(shù)軸上正數(shù)2對應(yīng)的點(diǎn)與負(fù)數(shù)一1對應(yīng)的點(diǎn)之間的距離,試探索:

(1)|2-(-1)|=______;如果|x-1|=2,則x=______.

(2)|x-2|+|x-4|的最小值,并求此時(shí)x的取值范圍;

(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,x+y的最大值與最小值;

(4)由以上探索及猜想,計(jì)算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示.設(shè)點(diǎn)AB,C所對應(yīng)數(shù)的和是p

1)若以B為原點(diǎn),寫出點(diǎn)A,C所對應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?

2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p

查看答案和解析>>

同步練習(xí)冊答案