【題目】國際足球比賽對足球的質(zhì)量有嚴格的要求,比賽所用足球上標有:430±20(g).請問:

(1)比賽所用足球的標準質(zhì)量是多少?符合比賽所用足球質(zhì)量的合格范圍是多少?

(2)組委會隨機抽查了8只足球的質(zhì)量,高于標準質(zhì)量記為正,低于標準質(zhì)量記為負,結(jié)果分別是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求這8只足球質(zhì)量的合格率.

(足球質(zhì)量的合格率=

【答案】(1) 410g~450g (2) 75%

【解析】

(1)由題意易知,足球上標有:430±20(g),說明足球的標準質(zhì)量為430g,最多不超過質(zhì)量的20g,最少不足20g,即可求解;

(2)根據(jù)標準質(zhì)量和抽查結(jié)果,可準確求出每個足球的質(zhì)量,在質(zhì)量的合格范圍內(nèi)的個數(shù)容易求出,進一步可求解.

(1)由題意可知:比賽所用足球的標準質(zhì)量是430g,

符合比賽所用足球質(zhì)量的合格范圍是410g~450g

(2)這8只足球的質(zhì)量分別為415g,442g,406g,424g,443g,425g,452g,421g,有6只足球的質(zhì)量是合格的,

即合格率為:×100%=75%.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示. 設(shè)點A,B,C所對應(yīng)數(shù)的和是p.

(1)若以B為原點,則點A,C所對應(yīng)的數(shù)為 、 ,p的值為 ;若以C為原點,p 的值為 ;

(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點FCE平分∠BCD,交AD于點E,AB=6EF=2,則BC長為( )

A. 10 B. 8 C. 14 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBC,DFBE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DF、BE分別平分∠ADEABC,

∴∠ADF=      ,

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整)請你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調(diào)查的學(xué)生人數(shù);

(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級640名學(xué)生在計算機應(yīng)用培訓(xùn)前、后各參加了一次水平相同的測試,并以同一標準分成不合格、合格優(yōu)秀”3個等級,為了解培訓(xùn)效果,用抽樣調(diào)查的方式從中抽取32名學(xué)生的2次測試等級,并繪制成條形統(tǒng)計圖:

1)這32名學(xué)生經(jīng)過培訓(xùn),測試等級不合格的百分比比培訓(xùn)前減少了多少?

2)估計該校八年級學(xué)生中,培訓(xùn)前、后等級為合格優(yōu)秀的學(xué)生各有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【證法回顧】證明:三角形中位線定理.

已知:如圖1,DE是△ABC的中位線.

求證:   

證明:添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點)到點F,使得EF=DE,連接CF;

請繼續(xù)完成證明過程:

(2)【問題解決】

如圖2,在正方形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=2,DF=3,∠GEF=90°,求GF的長.

(3)【拓展研究】

如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=,DF=2,∠GEF=90°,求GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個月的試銷時間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價x(元/kg)的變化而變化,具體變化規(guī)律如下表所示

銷售單價x(元/kg)

70

75

80

85

90

銷售量w(kg)

100

90

80

70

60

設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時,y的值最大?
(3)若在第一個月里,按使y獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個月的利潤達到1700元,那么第二個月里應(yīng)該確定銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60 cm,A=60°,點D從點C出發(fā)沿CA方向以4 cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2 cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D,E運動的時間是t(0<t≤15).過點DDFBC于點F,連接DE,EF。

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習冊答案