如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.
【考點(diǎn)】全等三角形的判定與性質(zhì);等腰直角三角形.
【分析】(1)①由已知推出∠ADC=∠BEC=90°,因?yàn)椤螦CD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到答案;
②由①得到AD=CE,CD=BE,即可求出答案;
(2)與(1)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.
【解答】(1)①證明:∵AD⊥DE,BE⊥DE,
∴∠ADC=∠BEC=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS).
②證明:由(1)知:△ADC≌△CEB,
∴AD=CE,CD=BE,
∵DC+CE=DE,
∴AD+BE=DE.
(2)證明:∵BE⊥EC,AD⊥CE,
∴∠ADC=∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=EC﹣CD=AD﹣BE.
【點(diǎn)評】本題主要考查了鄰補(bǔ)角的意義,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn),能根據(jù)已知證出符合全等的條件是解此題的關(guān)鍵,題型較好,綜合性比較強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知正比例函數(shù)y=k1x的圖象與一次函數(shù)y=k2x﹣9的圖象交于點(diǎn)P(3,﹣6).
(1)求k1,k2的值;
(2)如果一次函數(shù)y=k2x﹣9與x軸交于點(diǎn)A,求A點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,△OAB是等邊三角形,點(diǎn)A的坐標(biāo)為(1,),則點(diǎn)B關(guān)于y軸對稱的點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的部分關(guān)系.那么,從關(guān)閉進(jìn)水管起 分鐘該容器內(nèi)的水恰好放完.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com