【題目】閱讀材料,回答問題:
小聰學(xué)完了“銳角三角函數(shù)”的相關(guān)知識(shí)后,通過研究發(fā)現(xiàn):如圖1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通過上網(wǎng)查閱資料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在著==的關(guān)系.
這個(gè)關(guān)系對(duì)于一般三角形還適用嗎?為此他做了如下的探究:
(1)如圖2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,請(qǐng)判斷此時(shí)“==”的關(guān)系是否成立?答:
(2)完成上述探究后,他又想“對(duì)于任意的銳角△ABC,上述關(guān)系還成立嗎?”因此他又繼續(xù)進(jìn)行了如下的探究:
如圖3,在銳角△ABC中,BC=a,AC=b,AB=c,請(qǐng)判斷此時(shí)“ ==”的關(guān)系是否成立?并證明你的判斷.(提示:過點(diǎn)C作CD⊥AB于D,過點(diǎn)A作AH⊥BC,再結(jié)合定義或其它方法證明).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC方向以2cm/s的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)t=_____秒時(shí),△ABP為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上一點(diǎn),連接AE,延長CB至點(diǎn)F,使,過點(diǎn)F作于點(diǎn)H,射線FH分別交AB、CD于點(diǎn)M、N,交對(duì)角線AC于點(diǎn)P,連接AF.
依題意補(bǔ)全圖形;
求證:;
判斷線段FM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=3,AP=1,將三角板的直角頂點(diǎn)放在點(diǎn)P處,三角板的兩直角邊分別能與AB、BC邊相交于點(diǎn)E、F,連接EF.
(1)如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合,求此時(shí)PC的長;
(2)將三角板從(1)中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)停止,在這個(gè)過程中,請(qǐng)你觀察、探究并解答:在這個(gè)過程中,設(shè)CF=m.試解答:①用含m的代數(shù)式表示四邊形BEPF的面積,并直接寫出m的取值范圍;②從開始到停止,求線段EF的中點(diǎn)所經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D是BC邊上任意一點(diǎn),E在AC邊上,且AD=AE.
(1)若∠BAD=40°,求∠EDC的度數(shù);
(2)若∠EDC=15°,求∠BAD的度數(shù);
(3)根據(jù)上述兩小題的答案,試探索∠EDC與∠BAD的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG的邊長分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論是( 。
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時(shí)光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出關(guān)于軸對(duì)稱的;
(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com