【題目】已知等腰Rt△ABC,∠BAC=90°,AB=AC,點D為△ABC內部一點,連接AD、BD、CD,點H為BD中點,連接AH,且∠BAH=∠ACD.
(1)如圖1,若∠ADB=90°,求證:∠DAH=45°;
(2)如圖2,若∠ADB<90°,(1)問中的結論是否成立,若成立,請證明;若不成立,請說明理由.
【答案】(1)證明見解析;(2)成立.
【解析】
(1)用ASA證明△ABH≌△CAD,得到BH=AD,即AD=HD,得到△AHD是等腰直角三角形,即可得出結論;
(2)延長AH到E,使HE=AH,連接DE.延長CD交AB于F,交AH于G.通過證明△ABH≌△EDH和△EGD≌△CGA,得到△AGD為等腰直角三角形,即可得出結論.
(1)∵∠BAC=90°,∴∠CAD+∠BAD=90°.
∵∠ADB=90°,∴∠ABH+∠BAD=90°,∴∠CAD=∠ABH.
在△ABH和△CAD中,∵∠BAH=∠ACD,AB=CA,∠ABH=∠CAD,∴△ABH≌△CAD(ASA),∴BH=AD.
∵H為BD的中點,∴BH=HD,∴AD=HD,∴△AHD是等腰直角三角形,∴∠DAH=45°.
(2)成立.理由如下:
如圖,延長AH到E,使HE=AH,連接DE.延長CD交AB于F,交AH于G.
∵BH=DH,∠BHA=∠DHE,AH=EH,∴△ABH≌△EDH,∴AB=ED,∠1=∠E.
∵AB=AC,∴ED=AC.
∵∠1=∠2,∴∠E=∠2.
∵∠BAC=90°,∴∠1+∠GAC=90°.
∵∠1=∠2,∴∠2+∠GAC=90°,∴∠AGC=90°,∴∠EGD=∠CGA=90°.
在△EGD和△CGA中,∵∠E=∠2,∠EGD=∠CGA,ED=CA,∴△EGD≌△CGA(AAS),∴GD=GA,∴△AGD為等腰直角三角形,∴∠DAH=45°.
科目:初中數學 來源: 題型:
【題目】某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數據整理后繪制成如下的統(tǒng)計圖:
(1)該調查小組抽取的樣本容量是多少?
(2)求樣本學生中陽光體育運動時間為1.5小時的人數,并補全占頻數分布直方圖;
(3)請估計該市中小學生一天中陽光體育運動的平均時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,c為斜邊,a、b為直角邊,則化簡 的結果為( )
A.3a+b﹣c
B.﹣a﹣3b+3c
C.a+3b﹣3c
D.2a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果商店經銷一種蘋果,共有20筐,以每筐25千克為標準,超過或不足的千克數分別用正、負數來表示,記錄如表:
與標準質量的差值(單位;千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)這20筐蘋果中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準重量比較,這20筐蘋果總計超過或不足多少千克?
(3)若蘋果每千克售價元,則出售這20筐蘋果可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題:
如圖1,在△ABC中,∠B=2∠C,AD⊥BC于點D,求證:BC=AB+2BD.
小明利用條件AD⊥BC,在CD上截取DH=BD,如圖2,連接AH,既構造了等腰△ABH,又得到BH=2BD,從而命題得證。
(1)根據閱讀材料,證明:BC=AB+2BD;
(2)參考小明的方法,解決下面的問題:
如圖3,在△ABC中,∠BAC=90°,∠ABD=∠BCE,∠ABC=∠DCE,請?zhí)骄?/span>AD與BE的數量關系,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數是多少?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1 ,
(2)點C1的坐標是;
(3)以點B為位似中心,在網格內畫出△A2B2C2 ,
(4)使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com