【題目】如圖:在長(zhǎng)度為1個(gè)單位的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;

(2)△ABC的面積為________;

(3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為________個(gè)單位長(zhǎng)度.(在圖形中標(biāo)出點(diǎn)P)

【答案】(1)詳見(jiàn)解析;(2)3;(3)

【解析】

(1)先作出各點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),再順次連接各點(diǎn)即可;

(2)利用矩形的面積減去三角形三個(gè)頂點(diǎn)上三角形的面積即可;

(3)連接BC′交直線l于點(diǎn)P,P點(diǎn)即為所求點(diǎn),根據(jù)勾股定理即可得出結(jié)論

1)如圖所示;

(2)SABC=2×42×12×24×1=8﹣1﹣2﹣2=3.

故答案為:3;

(3)如圖所示點(diǎn)P即為所求點(diǎn),PB+PCBC

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥DC,線段AG,BG分別交CD于點(diǎn)E,F(xiàn),DE=CF. 求證:△GAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,過(guò)點(diǎn)B作BD⊥AC于點(diǎn)D,過(guò)D作DE∥BC,且DE=CD,連接CE,
(1)求證:△CDE為等邊三角形;
(2)請(qǐng)連接BE,若AB=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年5月27日,太原與大同之間開(kāi)通了“點(diǎn)對(duì)點(diǎn)”的云岡號(hào)旅游列車(中間不停車),該列車為空調(diào)車,由6節(jié)硬座車廂、1節(jié)軟臥車廂、1節(jié)硬臥車廂組成.行駛的路程約300km,該旅游列車從太原站出發(fā),以平均速度110km/h開(kāi)往大同.用x(h)表示列車行駛的時(shí)間,y(km)表示列車距大同的距離.

(1)寫出y與x之間的函數(shù)關(guān)系式;

(2)當(dāng)該旅游列車距大同就還有80km時(shí),求行駛了多長(zhǎng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是邊長(zhǎng)為1的正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn)(P與A、C不重合),點(diǎn)E在射線BC上,且PE=PB.設(shè)AP=x,△PBE的面積為y.則能夠正確反映y與x之間的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)為4x+3,寬為3x+5的長(zhǎng)方形紙片中剪去兩個(gè)邊長(zhǎng)分別為2x-1,x+2的正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.點(diǎn)P是線段BC上的動(dòng)點(diǎn)(點(diǎn)P不與B,C重合),連接并延長(zhǎng)AP交拋物線于另一點(diǎn)Q,設(shè)點(diǎn)Q的橫坐標(biāo)為x.

(1)①寫出點(diǎn)A,B,C的坐標(biāo):A(),B(),C();
②求證:△ABC是直角三角形;
(2)記△BCQ的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中, 是否存在最大值?若存在,求出 的最大值及點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,請(qǐng)證明四邊形BEDF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案