【題目】定義:對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x<0時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x≥0時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x﹣1,它的相關(guān)函數(shù)為.
(1)已知點(diǎn)A(﹣5,8)在一次函數(shù)y=ax﹣3的相關(guān)函數(shù)的圖象上,求a的值;
(2)已知二次函數(shù).
①當(dāng)點(diǎn)B(m,)在這個(gè)函數(shù)的相關(guān)函數(shù)的圖象上時(shí),求m的值;
②當(dāng)﹣3≤x≤3時(shí),求函數(shù)的相關(guān)函數(shù)的最大值和最小值;
(3)在平面直角坐標(biāo)系中,點(diǎn)M,N的坐標(biāo)分別為(﹣,1),(,1}),連結(jié)MN.直接寫(xiě)出線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象有兩個(gè)公共點(diǎn)時(shí)n的取值范圍.
【答案】(1)1;(2)①m=2﹣或m=2+或m=2﹣;②最大值為,最小值為﹣;(3)﹣3<n≤﹣1或1<n≤.
【解析】
試題(1)函數(shù)y=ax﹣3的相關(guān)函數(shù)為,將然后將點(diǎn)A(﹣5,8)代入y=﹣ax+3求解即可;
(2)二次函數(shù)的相關(guān)函數(shù)為,①分為m<0和m≥0兩種情況將點(diǎn)B的坐標(biāo)代入對(duì)應(yīng)的關(guān)系式求解即可;②當(dāng)﹣3≤x<0時(shí),,然后可 此時(shí)的最大值和最小值,當(dāng)0≤x≤3時(shí),函數(shù),求得此時(shí)的最大值和最小值,從而可得到當(dāng)﹣3≤x≤3時(shí)的最大值和最小值;
(3)首先確定出二次函數(shù)的相關(guān)函數(shù)與線段MN恰好有1個(gè)交點(diǎn)、2個(gè)交點(diǎn)、3個(gè)交點(diǎn)時(shí)n的值,然后結(jié)合函數(shù)圖象可確定出n的取值范圍.
試題解析:解:(1)函數(shù)y=ax﹣3的相關(guān)函數(shù)為,將點(diǎn)A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.
(2)二次函數(shù)的相關(guān)函數(shù)為 ;
①當(dāng)m<0時(shí),將B(m,)代入得,解得:m=2+(舍去)或m=2﹣.
當(dāng)m≥0時(shí),將B(m,)代入得:,解得:m=2+或m=2﹣.
綜上所述:m=2﹣或m=2+或m=2﹣.
②當(dāng)﹣3≤x<0時(shí),,拋物線的對(duì)稱軸為x=2,此時(shí)y隨x的增大而減小,∴此時(shí)y的最大值為.
當(dāng)0≤x≤3時(shí),函數(shù),拋物線的對(duì)稱軸為x=2,當(dāng)x=0有最小值,最小值為﹣,當(dāng)x=2時(shí),有最大值,最大值y=.
綜上所述,當(dāng)﹣3≤x≤3時(shí),函數(shù)的相關(guān)函數(shù)的最大值為,最小值為﹣;
(3)如圖1所示:線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有1個(gè)公共點(diǎn).
所以當(dāng)x=2時(shí),y=1,即﹣4+8+n=1,解得n=﹣3.
如圖2所示:線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有3個(gè)公共點(diǎn)
∵拋物線與y軸交點(diǎn)縱坐標(biāo)為1,∴﹣n=1,解得:n=﹣1,∴當(dāng)﹣3<n≤﹣1時(shí),線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有2個(gè)公共點(diǎn).
如圖3所示:線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有3個(gè)公共點(diǎn).
∵拋物線經(jīng)過(guò)點(diǎn)(0,1),∴n=1.
如圖4所示:線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有2個(gè)公共點(diǎn).
∵拋物線經(jīng)過(guò)點(diǎn)M(﹣,1),∴+2﹣n=1,解得:n=,∴1<n≤時(shí),線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象恰有2個(gè)公共點(diǎn).
綜上所述,n的取值范圍是﹣3<n≤﹣1或1<n≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的外接圓,是的直徑,過(guò)圓心的直線于,交于,是的切線,為切點(diǎn),連接,.
(1)求證:直線為的切線;
(2)求證:;
(3)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣1,0)、C(4,0),BC⊥x軸于點(diǎn)C,且AC=BC,拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)E是線段AB上一動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)E作x軸的垂線,交拋物線于點(diǎn)F,當(dāng)線段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點(diǎn)D在BC所在的直線上,點(diǎn)E在射線AC上,且AD=AE,連接DE.
⑴如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
⑵如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
⑶當(dāng)點(diǎn)D在直線BC上(不與點(diǎn)B、C重合)運(yùn)動(dòng)時(shí),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)畫(huà)出關(guān)于原點(diǎn)成中心對(duì)稱的,并寫(xiě)出點(diǎn)的坐標(biāo);
(2)作出點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),若把點(diǎn)向右平移個(gè)單位長(zhǎng)度后落在的內(nèi)部(不包括頂點(diǎn)和邊界),則的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,園林小組的同學(xué)用一段長(zhǎng)米的籬笆圍成一個(gè)一邊靠墻的矩形菜園墻的長(zhǎng)為米,設(shè)的長(zhǎng)為米,的長(zhǎng)為米.
(1)①寫(xiě)出與的函數(shù)關(guān)系是:
②自變量的取值范圍是
(2)園林小組的同學(xué)計(jì)劃使矩形菜園的面積為平方米,試求此時(shí)邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ABC=90°,AB=2,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得△ADE,則在旋轉(zhuǎn)過(guò)程中BC掃過(guò)的圖形面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”給我們的生活帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
(4)已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”D同學(xué)最認(rèn)可“網(wǎng)購(gòu)”從這四名同學(xué)中抽取兩名同學(xué),請(qǐng)你通過(guò)樹(shù)狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(b=0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)B的坐標(biāo)為(6,n)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB的面積;
(3)若kx+b<,直接寫(xiě)出x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com