【題目】已知:如圖,在RtABCRtACD中,AC=BC,∠ACB=90°,∠ADC=90°CD=2,(點(diǎn)AB分別在直線CD的左右兩側(cè)),射線CD交邊AB于點(diǎn)E,點(diǎn)GRtABC的重心,射線CG交邊AB于點(diǎn)F,AD=x,CE=y.

(1)求證:∠DAB=DCF.

(2)當(dāng)點(diǎn)E在邊CD上時(shí),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長(zhǎng).

【答案】(1)證明見解析;(2);(3)AD=1.

【解析】

1)首先根據(jù)點(diǎn)GRtABC的重心,得出CFRtABC的中線.,又由AC=BC,∠ACB=90°,得出CFAB,即∠AFC=90°,然后等量轉(zhuǎn)換即可得出∠DAB=DCF;

2)首先判定△CAD≌△BCH,得出BH = CD,CH = AD,又根據(jù)∠ADC=BHC=90°,得出ADBH,進(jìn)而得出,列出等式,即可得出y關(guān)于x的函數(shù)關(guān)系式;

3)分兩種情況進(jìn)行求解:①當(dāng)GC=GD時(shí),根據(jù)直角三角形斜邊中線定理得出MD=MC,進(jìn)而得出MGCD,且直線MG經(jīng)過(guò)點(diǎn)B,那么BHMG共線,即可得出AD;當(dāng)CG=CD時(shí),CG=2,點(diǎn)G為△ABC的重心,然后運(yùn)用勾股定理即可得出AD.

(1)證明:∵點(diǎn)GRtABC的重心,

CFRtABC的中線.

又∵在RtABCAC=BC,∠ACB=90°,

CFAB,即∠AFC=90°.

∵∠DEF=ADE+DAE=EFC+ECF,且∠ADE=EFC=90°,

∴∠DAB=DCF.

(2)解:如圖,過(guò)點(diǎn)BBHCD于點(diǎn)H.

∴△CAD≌△BCHASA.

BH = CD = 2,CH = AD = x,DH = 2-x.

∵∠ADC=BHC=90°

ADBH.

.

,.

.

(3)解:當(dāng)GC=GD時(shí),如圖1,

AC的中點(diǎn)M,聯(lián)結(jié)MD.那么MD=MC

聯(lián)結(jié)MG,MGCD,且直線MG經(jīng)過(guò)點(diǎn)B.那么BHMG共線.

CH=AD,那么AD=CH=.

當(dāng)CG=CD時(shí),如圖2,即CG=2,點(diǎn)G為△ABC的重心,

,AB=2CF=6,,

.

綜上所述,AD=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,地鐵+單車已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,BC,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:

地鐵站

A

B

C

D

E

x(千米)

8

9

10

11.5

13

y1(分鐘)

18

20

22

25

28

(1)y1關(guān)于x的函數(shù)表達(dá)式;

(2)李華騎單車的時(shí)間y2(單位:分鐘)也受x的影響,其關(guān)系可以用y2x211x78來(lái)描述,請(qǐng)問(wèn):李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短?并求出最短時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長(zhǎng)線于點(diǎn)POF∥BCACAC點(diǎn)E,交PC于點(diǎn)F,連接AF

1)判斷AF⊙O的位置關(guān)系并說(shuō)明理由;

2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一般捕魚船在A處發(fā)出求救信號(hào),位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無(wú)法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時(shí)30海里的速度航行,同時(shí)捕魚船向正北低速航行.30分鐘后,捕魚船到達(dá)距離A海里的D處,此時(shí)救援艇在C處測(cè)得D處在南偏東的方向上.

C、D兩點(diǎn)的距離;

捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達(dá)時(shí)到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平行四邊形ABCD中,ABBC=32.

(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點(diǎn)E,取線段BE的中點(diǎn)F,連接DFCE于點(diǎn)G.

(2)設(shè),那么向量=______.(用向量表示),并在圖中畫出向量在向量方向上的分向量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的一元二次方程x2m1x+m+2=0

1若方程有兩個(gè)相等的實(shí)數(shù)根求m的值;

2RtABC中,C=90°tanA的值恰為1中方程的根,求cosB的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB,AD邊上的點(diǎn),DECF交于點(diǎn)G.

(1)如圖①,若四邊形ABCD是矩形,且DECF,求證: ;

(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線與雙曲線交于,兩點(diǎn),則的值(

A. -5B. -10C. 5D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對(duì)稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個(gè)數(shù)(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案