【題目】如圖,ABCD中,AB=2cm,AC=5cm,SABCD=8cm2,E點從B點出發(fā),以1cm每秒的速度,在AB延長線上向右運動,同時,點F從D點出發(fā),以同樣的速度在CD延長線上向左運動,運動時間為t秒.
(1)在運動過程中,四邊形AECF的形狀是____;
(2)t=____時,四邊形AECF是矩形;
(3)求當(dāng)t等于多少時,四邊形AECF是菱形.
【答案】(1)四邊形AECF是平行四邊形;理由見解析;(2)t=1;(3)t=
【解析】
(1)由平行四邊形的性質(zhì)得出AB=CD=2cm,AB∥CD,由已知條件得出CF=AE,即可得出四邊形AECF是平行四邊形;
(2)若四邊形AECF是矩形,則∠AFC=90°,得出AF⊥CD,由平行四邊形的面積得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;
(3)當(dāng)AE=CE時,四邊形AECF是菱形.過C作CG⊥BE于G,則CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.
解:(1)四邊形AECF是平行四邊形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AB=CD=2cm,AB∥CD,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四邊形AECF是平行四邊形;
故答案為:平行四邊形;
(2)t=1時,四邊形AECF是矩形;理由如下:
若四邊形AECF是矩形,
∴∠AFC=90°,
∴AF⊥CD,
∵SABCD=CDAF=8cm2,
∴AF=4cm,
在Rt△ACF中,AF2+CF2=AC2,
即42+(t+2)2=52,
解得:t=1,或t=-5(舍去),
∴t=1;故答案為:1;
(3)依題意得:AE平行且等于CF,
∴四邊形AECF是平行四邊形,
故AE=CE時,四邊形AECF是菱形.
又∵BE=tcm,
∴AE=CE=t+2(cm),
過C作CG⊥BE于G,如圖所示:
則CG=4cm
AG==3(cm),
∴GE=t+2-3=t-1(cm),
在△CGE中,由勾股定理得:CG2+GE2=CE2=AE2,
即42+(t-1)2=(t+2)2,
解得:t=,
即t=s時,四邊形AECF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在如圖①的正方形中,使它的直角頂點在對角線上滑動,直角的一邊始終經(jīng)過點,另一邊與射線相交于點,探究:
(1)如圖②,當(dāng)點在上時,求證:.
(2)如圖③,當(dāng)點在延長線上時,①中的結(jié)論還成立嗎?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A.
(1)求點A的坐標(biāo);
(2)設(shè)x軸上一點P(a,b),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當(dāng)GB平分∠CGE時,BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片剪成四個小正方形,得到4個小正方形,稱為第一次操作;然后,將其中的一個正方形再剪成四個小正方形,共得到7個小正方形,稱為第二次操作;再將其中的一個正方形再剪成四個小正方形,共得到10個小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個小正方形,則需要操作的次數(shù)是( 。
A. 669 B. 670 C. 671 D. 672
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐與探究
寬與長的比是(約0.618)的矩形叫做黃金矩形。黃金矩形給我們以協(xié)調(diào)、均勻的美感。世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計。
下面我們通過折紙得到黃金矩形。
第一步,在一張矩形紙片的一端,利用圖1的方法折出一個正方形,然后把紙片展平。
第二步,如圖2,把這個正方形折成兩個相等的矩形,再把紙片展平,折痕是。
第三步,折出內(nèi)側(cè)矩形的對角線,并把折到圖3中所示的處,折痕為。
第四步,展平紙片,按照所得的點折出,使;過點折出折痕,使。
(1)上述第三步將折到處后,得到一個四邊形,請判斷四邊形的形狀,并說明理由。
(2)上述第四步折出折痕后得到一個四邊形,這個四邊形是黃金矩形,請你說明理由。(提示:設(shè)的長度為2)
(3)在圖4中,再找出一個黃金矩形_______________________________(黃金矩形除外,直接寫出答案,不需證明,可能參考數(shù)值:)
(4)請你舉一個采用了黃金矩形設(shè)計的世界名建筑_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】借助下面的材料,
材料:在學(xué)習(xí)絕對值時,老師教過我們絕對值的幾何含義,如|5﹣3|表示5、3在數(shù)軸上對應(yīng)的兩點之間的距離:|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在數(shù)軸上對應(yīng)的兩點之間的距離:|5|=|5﹣0|,所以|5|表示5在數(shù)軸上對應(yīng)的點到原點的距離.一般地,點A點B在數(shù)軸上分別表示有理數(shù)a,b,那么點A、點B之間的距離可表示為|a﹣b|.
問題:如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為﹣8和12,點P從點O出發(fā),以每秒1個單位長度的速度沿數(shù)軸負(fù)方向運動,點Q同時從點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為t秒.
(1)求經(jīng)過2秒后,數(shù)軸點P、Q分別表示的數(shù);
(2)當(dāng)t=3時,求PQ的值;
(3)在運動過程中是否存在時間t使AP=AB,若存在,請求出此時t的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com