【題目】操作:將一把三角尺放在如圖①的正方形中,使它的直角頂點在對角線上滑動,直角的一邊始終經(jīng)過點,另一邊與射線相交于點,探究:

(1)如圖②,當點上時,求證:.

(2)如圖③,當點延長線上時,①中的結論還成立嗎?簡要說明理由.

【答案】(1)證明見解析;(2)成立,理由見解析.

【解析】

1)過點PMN//BC,可以證明△PMQ≌△BNP,從而得出BP=QP;

2)過點,于點,可以證明△PMQ≌△BNP,從而得出BP=QP

(1)證明:過點,分別交于點,交于點,

則四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰直角三角形.

NP=NC=MB

BPQ=90°

QPN+BPM=90°,而∠BPM+PBM=90° ,

QPN=PBM,又∠QNP=PMB=90°,

在△QNP和△BMP中,

QNP=PMB,MB=NP,∠QPN=PBM

QNP≌△PMBASA),

∴PQ=BP

(2)成立.

過點,于點

在正方形,

是矩形,

是等腰直角三角形,

,

中,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社推出一條成本價為500元/人的省內旅游線路.游客人數(shù)(人/月)與旅游報價(元/人)之間的關系為,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內,求該旅游線路報價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)當這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1y2x+1與直線l2ymx+4相交于點P1,b).

1)求bm的值;

2)垂直于x軸的直線與直線l1l2,分別交于點C,D,垂足為點E,設點E的坐標為(a,0)若線段CD長為2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸交于點A10),與y軸交于點B0-2).

1)求直線AB的解析式;

2)若點C在直線AB上,且,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個腰長為4cm的等腰三角形,要求等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時從A地出發(fā)去25km遠的B地,甲騎車,乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40min,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好為3h.

1)若設乙的速度為x km/h,則甲的速度為 km/h,甲遇見乙時,乙走的路程可以表示為 km,甲走的路程可以表示為 km.

2)兩人的速度分別是多少?(請用方程來解決問題)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A表示小明家,點B表示學校小明媽媽騎車帶著小明去學校,到達C處時發(fā)現(xiàn)數(shù)學書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明同時小明步行去學校到達學校后等待媽媽假設拿書時間忽略不計,小明和媽媽在整個運動過程中分別保持勻速媽媽從C處出發(fā)x分鐘時離C處的距離為y1,小明離C處的距離為y2,如圖②,折線O-D-E-F表示y1x的函數(shù)圖像折線O-G-F表示y2x的函數(shù)圖像

(1)小明的速度為_________m/min,a的值為__________

(2)設媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y

寫出小明媽媽在騎車由C處返回到A處的過程中,yx的函數(shù)表達式及x的取值范圍;

在圖③中畫出整個過程中yx的函數(shù)圖像.(要求標出關鍵點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,AB=2cm,AC=5cm,SABCD=8cm2E點從B點出發(fā),以1cm每秒的速度,在AB延長線上向右運動,同時,點FD點出發(fā),以同樣的速度在CD延長線上向左運動,運動時間為t秒.

1)在運動過程中,四邊形AECF的形狀是____;

2t____時,四邊形AECF是矩形;

3)求當t等于多少時,四邊形AECF是菱形.

查看答案和解析>>

同步練習冊答案