如圖1,在一個(gè)不透明的袋中裝有四個(gè)球,分別標(biāo)有字母A、B、C、D,這些球除了所標(biāo)字母外都相同,另外,有一面白色、另一面黑色、大小相同的4張正方形卡片,每張卡片上面的字母相同,分別標(biāo)有A、B、C、D.最初,擺成圖2的樣子,A、D是黑色,B、C是白色.
  操作:①從袋中任意取一個(gè)球;
       ②將與取出球所標(biāo)字母相同的卡片翻過來;
       ③將取出的球放回袋中
再次操作后,觀察卡片的顏色.
(如:第一次取出球A,第二次取出球B,此時(shí)卡片的顏色變
(1)求四張卡片變成相同顏色的概率;
(2)求四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的概率.
考點(diǎn):列表法與樹狀圖法
專題:分類討論
分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與四張卡片變成相同顏色的情況,再利用概率公式即可求得答案;
(2)由(1)中的樹狀圖可求得四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的情況,再利用概率公式即可求得答案.
解答:解:(1)畫樹狀圖得:

∵共有16種等可能的結(jié)果,四張卡片變成相同顏色的有4種情況,
∴四張卡片變成相同顏色的概率為:
4
16
=
1
4
;

(2)∵四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的有8種情況,
∴四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的概率為:
8
16
=
1
2
點(diǎn)評(píng):本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

據(jù)教育部統(tǒng)計(jì),參加2014年全國高等學(xué)校招生考試的考生約為9390000人,用科學(xué)記數(shù)法表示9390000是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡(jiǎn),再求值:(
1
x-2
+2)(x-2)+(x-1)2,其中x=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:直線l:y=-2,拋物線y=ax2+bx+c的對(duì)稱軸是y軸,且經(jīng)過點(diǎn)(0,-1),(2,0).
(1)求該拋物線的解析式;
(2)如圖①,點(diǎn)P是拋物線上任意一點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,求證:PO=PQ.
(3)請(qǐng)你參考(2)中結(jié)論解決下列問題:
(i)如圖②,過原點(diǎn)作任意直線AB,交拋物線y=ax2+bx+c于點(diǎn)A、B,分別過A、B兩點(diǎn)作直線l的垂線,垂足分別是點(diǎn)M、N,連結(jié)ON、OM,求證:ON⊥OM.
(ii)已知:如圖③,點(diǎn)D(1,1),試探究在該拋物線上是否存在點(diǎn)F,使得FD+FO取得最小值?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在?ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課本中有一道作業(yè)題:
有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.
(1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長又分別為多少mm?請(qǐng)你計(jì)算.
(2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點(diǎn)P從點(diǎn)B沿邊BA向點(diǎn)A以1cm/s的速度勻速運(yùn)動(dòng),以P為圓心,PB長為半徑作圓,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t s,若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AD=2AB,E是AD邊上一點(diǎn),DE=
1
n
AD(n為大于2的整數(shù)),連接BE,作BE的垂直平分線分別交AD,BC于點(diǎn)F,G,F(xiàn)G與BE的交點(diǎn)為O,連接BF和EG.
(1)試判斷四邊形BFEG的形狀,并說明理由;
(2)當(dāng)AB=a(a為常數(shù)),n=3時(shí),求FG的長;
(3)記四邊形BFEG的面積為S1,矩形ABCD的面積為S2,當(dāng)
S1
S2
=
17
30
時(shí),求n的值.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,則∠B=
 
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案