【題目】如圖,我們可以用長度相同的火柴棒按一定規(guī)律搭正多邊形組成圖案,圖案①需8根火柴棒,圖案②需15根火柴棒,…,按此規(guī)律,第n個圖案需要________根火柴棒,第2 019個圖案需要________根火柴棒.
【答案】(7n+1); 14134
【解析】
(1)根據(jù)圖案①、②、③中火柴棒的數(shù)量可知,第1個圖形中火柴棒有8根,每多一個多邊形就多7根火柴棒,由此可知第n個圖案需火柴棒8+7(n-1)=7n+1根;
(2)根據(jù)(1)的結(jié)果,當n=2019時可得結(jié)果.
(1)∵圖案①需火柴棒:8根;
圖案②需火柴棒:8+7=15根;
圖案③需火柴棒:8+7+7=22根;
…
∴圖案n需火柴棒:8+7(n1)=7n+1根;
(2)當n=2019時,7n+1=7×2019+1=14134,
∴搭建第2019個圖案需要14134根火柴棒;
故答案為:7n+1;14134.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和
矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED=16m,AE=8m,拋物線的頂點C到ED的
距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標系.
(1)求拋物線的解析式;
(2)已知從某時刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時間t(單位:h)的變化滿足函數(shù)
關系且當水面到頂點C的距離不大于5m時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】讀一讀:式子“1+2+3+4+5+…+100”表示1開始的100個連續(xù)自然數(shù)的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可以將“1+2+3+4+5+…+100”表示為,這里“”是求和符號.例如:1+3+5+7+9+…+99,即從1開始的100以內(nèi)的連續(xù)奇數(shù)的和,可表示為(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示為n3.
通過對上以材料的閱讀,請解答下列問題.
(1)2+4+6+8+10+…+100(即從2開始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符合可表示為_________________;
(2)計算(n2-1)=________________.(填寫最后的計算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠在生產(chǎn)過程中要消耗大量電能,消耗每千度電產(chǎn)生利潤與電價是一次函數(shù)關系,經(jīng)過測算,工廠每千度電產(chǎn)生利潤y(元/千度))與電價x(元/千度)的函數(shù)圖象如圖:
(1)當電價為600元/千度時,工廠消耗每千度電產(chǎn)生利潤是多少?
(2)為了實現(xiàn)節(jié)能減排目標,有關部門規(guī)定,該廠電價x(元/千度)與每天用電量m(千度)的函數(shù)關系為x=10m+500,且該工廠每天用電量不超過60千度,為了獲得最大利潤,工廠每天應安排使用多少度電?工廠每天消耗電產(chǎn)生利潤最大是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系中,函數(shù)的圖象與一次函數(shù)的圖象的交點為.
(1)求一次函數(shù)的解析式;
(2)設一次函數(shù)的圖象與軸交于點,若點是軸上一點,且滿足的面積是6,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點.
(1)點E是線段AD的中點嗎?說明理由;
(2)當AD=10,AB=3時,求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】氣象臺發(fā)布的衛(wèi)星云圖顯示,代號為的臺風在某海島(設為點)的南偏東方向的點生成,測得.臺風中心從點以的速度向正北方向移動,經(jīng)后到達海面上的點處.因受氣旋影響,臺風中心從點開始以的速度向北偏西方向繼續(xù)移動.以為原點建立如圖所示的直角坐標系.
(1)臺風中心生成點的坐標為 ,臺風中心轉(zhuǎn)折點的坐標為 ;(結(jié)果保留根號)
(2)已知距臺風中心范圍內(nèi)均會受到臺風侵襲.如果某城市(設為點)位于點的正北方向且處于臺風中心的移動路線上,那么臺風從生成到最初侵襲該城要經(jīng)過多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(-2,4),過點A作AB⊥y軸,垂足為B,連接OA.
(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點A.
①求c的值;
②將拋物線向下平移m個單位長度,使平移后得到的拋物線頂點落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com