【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(-1,0),B點坐標(biāo)為(5,0)點C(0,5),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MAB的面積。
【答案】(1) y=-x2+4x+5 (2) 27
【解析】
試題(1)將已知的三點坐標(biāo)代入拋物線中,即可求得拋物線的解析式;
(2)求出二次函數(shù)的頂點坐標(biāo),根據(jù)三角形面積計算公式求出答案.
試題解析:∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(-1,0)、(0,5)和(0,5),
∴,
∴,
∴拋物線的解析式為y=-x2+4x+5;
(2)∵B點坐標(biāo)為(5,0),
∴AB=5-(-1)=6,
∵y=-x2+4x+5,
∴y=-(x-2)2+9,
∴拋物線圖象的頂點坐標(biāo)為(2,9),
∴S△AMB=×6×9=27.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,,對角線AC平分.
如圖1,若,,探究AD、AB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.
如圖2若將中的條件“”去掉,中的結(jié)論是否還成立?并證明你的結(jié)論;
如圖3,若,試探究AD、AB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點P從點B出發(fā),以每秒1個單位的速度,沿BA向點A移動;同時點Q從點C出發(fā),以每秒2個單位的速度,沿CB向點B移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤2),解答下列問題:
(1)當(dāng)x為何值時,PQ⊥DQ;
(2)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最小值?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,下面四個結(jié)論:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正確的結(jié)論是____.(把所有正確結(jié)論的序號都寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)當(dāng)t=2秒時,求PQ的長;
(2)求出發(fā)時間為幾秒時,△PQB是等腰三角形?
(3)若Q沿B→C→A方向運動,則當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個數(shù)能表示成某個整數(shù)的平方的形式,則稱這個數(shù)為完全平方數(shù),完全平方數(shù)是非負(fù)數(shù).例如:0=02,1=12,4=22,9=32,16=42,25=52,36=62,121=112….
(1)若28+210+2n是完全平方數(shù),求n的值.
(2)若一個正整數(shù),它加上61是一個完全平方數(shù),當(dāng)減去11是另一個完全平方數(shù),寫出所有符合的正整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:和同一平面內(nèi)的點.
(1)如圖1,若點在邊上過點作交于點,作交于點.根據(jù)題意,請在圖1中補全圖形,并直接寫出與的數(shù)量關(guān)系;
(2)如圖2,若點在的延長線上,且,.請判斷與的位置關(guān)系并說明理由;
(3)如圖3,點是外部的一點,過點作交直線于點,作交直線于點,請直接寫出與的數(shù)量關(guān)系,并圖3中補全圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△CEF均為等腰直角三角形,∠ABC=∠CFE=90°,連接AE,點G是AE中點,連接BG和GF.
(1)如圖1,當(dāng)△CEF中E、F落在BC、AC邊上時,探究FG與BG的關(guān)系;
(2)如圖2,當(dāng)△CEF中F落在BC邊上時,探究FG與BG的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠A+∠E+∠F+∠C=540°.
(1)試判斷直線AB與CD的位置關(guān)系,并說明理由;
(2)如圖2,∠PAB=3∠PAQ,∠PCD=3∠PCQ,試判斷∠APC與∠AQC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com