某公司計(jì)劃購買甲種和乙種服裝共160套,已知購買一套甲種服裝比購買一套乙種服裝少用30元,且購買3套甲種和4套乙種服裝共需1590元.
(1)求購買一套甲種服裝和一套乙種服裝各需多少元?
(2)公司根據(jù)實(shí)際情況,要求購買這兩種服裝的總費(fèi)用不能超過36660元,并且購買甲種服裝的數(shù)量超過乙種服裝數(shù)量的
3
5
,求總費(fèi)用最低的購買方案.
考點(diǎn):一次函數(shù)的應(yīng)用,一元一次方程的應(yīng)用,一元一次不等式組的應(yīng)用
專題:
分析:(1)設(shè)購買一套甲種服裝需要x元,則購買一套乙種服裝需要(x+30)元,由購買3套甲種和4套乙種服裝共需1590元建立方程求出其解即可;
(2)設(shè)購買甲種服裝m套,則購買乙種服裝(160-m)套,總費(fèi)用為W元,根據(jù)條件建立不等式組求出m的范圍,根據(jù)W與m的關(guān)系就可以求出結(jié)論.
解答:解:(1)設(shè)購買一套甲種服裝需要x元,則購買一套乙種服裝需要(x+30)元,由題意,得
3x+4(x+30)=1590,
解得:x=210.
∴購買一套乙種服裝需要210+30=240元.
答:購買一套甲種服裝需要210元,則購買一套乙種服裝需要240元;
(2)設(shè)購買甲種服裝m套,則購買乙種服裝(160-m)套,總費(fèi)用為W元,由題意,得
m≤
3
5
(160-m)
210m+240(160-m)≤36660
,
解得:58≤m≤60.
∵m為整數(shù),
∴m=58,59,60.
設(shè)購買的總費(fèi)用為W元,由題意,得
W=210m+240(160-m)=-30m+38400.
∴k=-30<0,
∴W隨m的增大而減小,
∴當(dāng)m=60時(shí),W最小=36600.
∴乙種服裝購買:160-60=100套.
∴購買方案為:甲種服裝購買60套,乙種服裝購買100套.
點(diǎn)評(píng):本題考查了列一元一次方程解實(shí)際問題的運(yùn)用,一元一次不等式組的運(yùn)用,一次函數(shù)的性質(zhì)的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵,由一次函數(shù)的解析式的性質(zhì)求解是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

寫出一個(gè)圖象經(jīng)過一,三象限的正比例函數(shù)y=kx(k≠0)的解析式(關(guān)系式)
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為菱形,點(diǎn)G為BC的延長線上一點(diǎn),連接AG,分別交BD、DC于點(diǎn)E、F,連CE.
(1)猜想EC與AE的數(shù)量關(guān)系為
 
;(不需證明)
(2)若F為CD的中點(diǎn),猜想
FG
EF
=
 
,并說明理由;
(3)若AE=mEF(m>1),猜想
FG
EF
=
 
.(用m表示,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑,以AB為直角邊作Rt△ABC,∠CAB=90°,斜邊BC與⊙O交于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,DG⊥AB于點(diǎn)F,交⊙O于點(diǎn)G.
(1)求證:E是AC的中點(diǎn);
(2)若AE=3,cos∠ACB=
2
3
,求弦DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內(nèi)壁離杯底4cm的點(diǎn)B處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻從外壁A處到達(dá)內(nèi)壁B處的最短距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)開展了“校園歌曲”比賽所有參賽選手均獲獎(jiǎng),獎(jiǎng)項(xiàng)分為一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和優(yōu)秀獎(jiǎng),并將獲獎(jiǎng)結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖(不完整).

請(qǐng)你根據(jù)圖中所給信息解答下列問題:
(1)參賽比賽的選手有多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)一等獎(jiǎng)3位選手中,有1位男同學(xué)和2位女同學(xué),學(xué)校從中隨機(jī)選出2位參加市“校園歌曲”大賽,請(qǐng)用畫數(shù)狀圖或列表的方法求出所選2位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:cos60°+(
1
2
-3-
9
4
+(1-
2
0
(2)化簡:(1-
n
m+n
)÷
m
m2-n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解分式方程:
2+x
2-x
+
16
x2-4
=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=k1x+b1(k1>0)與y=k2x+b2(k2<0)相交于點(diǎn)(-2,0),且兩直線與y軸圍成的三角形面積為4,那么b1-b2等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案