【題目】將一張矩形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.

(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.

【答案】
(1)解:∵∠GEF=∠FEC=64°,

∴∠BEG=180°﹣64°×2=52°

∵AD∥BC,

∴∠1=∠BEG=52°


(2)證明:∵AD∥BC,

∴∠GFE=∠FEC

∴∠GEF=∠GFE

∴GE=GF,

∴△EFG是等腰三角形


【解析】(1)根據(jù)翻折變換的性質(zhì)求出∠GEF的度數(shù),從而求出∠GEB的度數(shù),再根據(jù)平行線的性質(zhì)求出∠1;(2)根據(jù)AD∥BC得到∠GFE=∠FEC,根據(jù)翻折不變性得到∠GEF=∠GFE,由等角對等邊得到GE=GF.
【考點精析】根據(jù)題目的已知條件,利用翻折變換(折疊問題)的相關知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AD是角平分線,DEADABE,△ADE的外接圓⊙O與邊AC相交于點F,過FAB的垂線交ADP,交ABM,交⊙OG,連接GE

(1)求證:BC是⊙O的切線;

(2)若tan∠G=,BE=4,求⊙O的半徑;

(3)在(2)的條件下,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD、過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.

(1)求證:EF是⊙O的切線;

(2)求證:△FDB∽△FAD;

(3)如果⊙O的半徑為5,sin∠ADE=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E為等腰△ABC的底邊BC上一動點,過E作EF⊥BC交AB于D,交CA的延長線于F,問:

(1)∠F與∠ADF的關系怎樣?說明理由;
(2)若E在BC延長線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說明理由;若成立,畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,BF、DE相交于點A,BG交BF于點B,交AC于點C.

(1)指出ED、BC被BF所截的同位角,內(nèi)錯角,同旁內(nèi)角;
(2)指出ED、BC被AC所截的內(nèi)錯角,同旁內(nèi)角;
(3)指出FB、BC被AC所截的內(nèi)錯角,同旁內(nèi)角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點,且DE=CE,連接BD,CD.

(1)試判斷BD與AC的位置關系和數(shù)量關系,并說明理由;
(2)如圖2,若將△DCE繞點E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關系和數(shù)量關系是否發(fā)生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數(shù)量關系,并說明理由;
②你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩個長度相同的滑梯靠在一面墻上.已知左邊滑梯的高度AC與右邊滑梯水平方向的長度DF相等,則這兩個滑梯與地面夾角∠ABC與∠DFE的度數(shù)和是( )

A.60°
B.90°
C.120°
D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中的每個小正方形的邊長為1,A,B是格點,則以A,B,C為等腰三角形頂點的所有格點C的位置有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(1)A,B間的距離是;
(2)若點C也是數(shù)軸上的點,C到B的距離是C到原點O的距離的3倍,求C對應的數(shù);
(3)若當電子P從B點出發(fā),以6個單位長度/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4個單位長度/秒的速度向左運動,設兩只電子螞蟻在數(shù)軸上的D點相遇,那么D點對應的數(shù)是多少?

查看答案和解析>>

同步練習冊答案