【題目】如圖,已知中,,且于,與相交于點(diǎn),點(diǎn)是邊的中點(diǎn),連接.
(1)求證:
(2)求證:
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)根據(jù)等角的余角相等可得∠DBF=∠DCA,然后利用ASA判定Rt△DFB≌Rt△DAC,從而得出BF=AC;
(2)由已知得出△ABC是等腰三角形,然后可得CE=AE=AC,又因?yàn)?/span>BF=AC,所以CE=AC=BF.
證明:(1)∵CD⊥AB,,
∴∠DBF=90°∠BFD,∠DCA=90°∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,,
∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;
(2)∵BE平分∠ABC,,
∴△ABC是等腰三角形,
∴CE=AE=AC.
又由(1),知BF=AC,
∴CE=AC=BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角度m(0°<m<360°),得到線(xiàn)段AP,連接PB,PC.當(dāng)△BPC是等腰三角形時(shí),m的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=90°,OC是一條可以繞點(diǎn)O轉(zhuǎn)動(dòng)的射線(xiàn),ON平分∠AOC,OM平分∠BOC.
(1)當(dāng)射線(xiàn)OC轉(zhuǎn)動(dòng)到∠AOB的內(nèi)部時(shí),如圖(1),求∠MON得度數(shù).
(2)當(dāng)射線(xiàn)OC轉(zhuǎn)動(dòng)到∠AOB的外時(shí)(90°<∠BOC<∠180°),如圖2,∠MON的大小是否發(fā)生變化,變或者不變均說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E.F分別是兩組對(duì)邊延長(zhǎng)線(xiàn)的交點(diǎn),EG.FG分別平分.,若,,則的大小是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算張老師在黑板上寫(xiě)了三個(gè)算式,希望同學(xué)們認(rèn)真觀察,發(fā)現(xiàn)規(guī)律.
請(qǐng)你結(jié)合這些算式,解答下列問(wèn)題:
(1)請(qǐng)你再寫(xiě)出另外兩個(gè)符合上述規(guī)律的算式;
(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);
(3)拓展延伸:“兩個(gè)連續(xù)偶數(shù)的平方差是8的倍數(shù)”,這個(gè)結(jié)論正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AOBC的頂點(diǎn)O(0,0),A(﹣1,2),點(diǎn)B在x軸正半軸上按以下步驟作圖:①以點(diǎn)O為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊OA,OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,大于DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)F;③作射線(xiàn)OF,交邊AC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為( 。
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在數(shù)軸上點(diǎn)表示的數(shù)為-2,0,6.點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.
(1)請(qǐng)直接寫(xiě)出結(jié)果, . . .
(2)點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為,請(qǐng)化簡(jiǎn)式子,(寫(xiě)出化簡(jiǎn)過(guò)程)
(3)點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).請(qǐng)問(wèn):的值是否隨著運(yùn)動(dòng)時(shí)間的變化而變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在矩形中,對(duì)角線(xiàn)與相交于點(diǎn),過(guò)點(diǎn)作直線(xiàn),且交于點(diǎn),交于點(diǎn),連接,且平分.
①求證:四邊形是菱形;
②直接寫(xiě)出的度數(shù);
(2)把(1)中菱形進(jìn)行分離研究,如圖2,分別在邊上,且,連接為的中點(diǎn),連接,并延長(zhǎng)交于點(diǎn),連接.試探究線(xiàn)段與之間滿(mǎn)足的關(guān)系,并說(shuō)明理由;
(3)把(1)中矩形進(jìn)行特殊化探究,如圖3,矩形滿(mǎn)足時(shí),點(diǎn)是對(duì)角線(xiàn)上一點(diǎn),連接,作,垂足為點(diǎn),交于點(diǎn),連接,交于點(diǎn).請(qǐng)直接寫(xiě)出線(xiàn)段三者之間滿(mǎn)足的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com