【題目】如圖,矩形的對角線交于點.點在邊上,連結(jié)交對角線于點是線段的中點,連結(jié).
(1)求證:.
(2)判斷與的數(shù)量關(guān)系,并說明理由.
(3)若和面積分別為和,求的最大值.
【答案】(1)見解析;(2),理由見解析;(3)最大值為1
【解析】
(1)根據(jù)矩形性質(zhì)可知為等腰三角形,從而可得,進而得出;即得;
(2)連結(jié),由矩形性質(zhì)可知O是AC的中點,從而可得OF是的中位線,得出,結(jié)合(1)的結(jié)論可知OF是DB的垂直平分線,故DF=BF;
(3)由可設(shè),由可將圖形中線段CE、EF、DF都用的代數(shù)式表示,從而表示出,然后計算比值,根據(jù)K的取值范圍確定最大值即可.
已知矩形,
∴OA=OB,
,
,
,
,
,
.
連結(jié),
是的中點,
,
,
,
,
.
,
設(shè),
,
,
,
,
,
,
,
是的中點,
,
,
,
,
,
當(dāng)時,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月25日是全國中小學(xué)生安全教育日,前進中學(xué)為加強學(xué)生的安全意識,組全校學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100分),各等級進行統(tǒng)計(級.分-分;級.分分;級.分分;級.分分;級.分分),并將統(tǒng)計結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(1)_______.
(2)補全頻數(shù)分布直方圖;
(3)該校共有名學(xué)生.若成績在分以下(含分)的學(xué)生安全意識不強,有待進.步加強安全教育,則該校安全意識不強的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù),下列說法正確的個數(shù)是( 。
①對于任何滿足條件的,該二次函數(shù)的圖象都經(jīng)過點和兩點;
②若該函數(shù)圖象的對稱軸為直線,則必有;
③當(dāng)時,隨的增大而增大;
④若,是函數(shù)圖象上的兩點,如果總成立,則.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點,ON=6,把△OMN沿MN折疊,點O落在點C處,MC與OB交于點P,若MN=MP=5,則PN=( )
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)數(shù)學(xué)理解:如圖①,是等腰直角三角形,過斜邊的中點作正方形,分別交,于點,,求證:;
(2)問題解決:如圖②,在任意直角內(nèi),找一點,過點作正方形,分別交,于點,,若,求的度數(shù);
(3)聯(lián)系拓廣;如圖③,在(2)的條件下,分別延長,,交于點,,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對交通法則的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:.非常了解,.比較了解,.基本了解,.不太了解,并將此次調(diào)查結(jié)果整理繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次共調(diào)查_______名學(xué)生;扇形統(tǒng)計圖中所對應(yīng)扇形的圓心角度數(shù)是_______;
(2)補全條形統(tǒng)計圖;
(3)學(xué)校準(zhǔn)備從甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+m的圖象與反比例函數(shù)的圖象交于A、B兩(點A在點B的左側(cè)),點P為x軸上一動點,當(dāng)有且只有一個點P,使得∠APB=90°,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)經(jīng)過點;
(1)求反比例函數(shù)的解析式;
(2)點在軸的正半軸上,點在軸的正半軸上,直線經(jīng)過點,直線交反比例函數(shù)圖象于另一點,若,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com