【題目】如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點,ON=6,把△OMN沿MN折疊,點O落在點C處,MCOB交于點P,若MN=MP=5,則PN=(  )

A.2B.3C.D.

【答案】D

【解析】

根據(jù)等邊對等角,得出∠MNP=MPN,由外角的性質(zhì)和折疊的性質(zhì),進一步證明CPN∽△CNM,通過三角形相似對應邊成比例計算出CP,再次利用相似比即可計算出結(jié)果.

解:∵MN=MP,

∴∠MNP=MPN,

∴∠CPN=ONM,

由折疊可得,∠ONM=CNM,CN=ON=6

∴∠CPN=CNM,

又∵∠C=C,

∴△CPN∽△CNM,

,即CN2=CP×CM,

62=CP×(CP+5),

解得:CP=4,

又∵,

PN=,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸于A,B兩點,交y軸于點C.直線經(jīng)過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設(shè)點P的橫坐標為m

①當是直角三角形時,求點P的坐標;

②作點B關(guān)于點C的對稱點,則平面內(nèi)存在直線l,使點M,B,到該直線的距離都相等.當點Py軸右側(cè)的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(kb可用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是一個演講臺,圖是演講臺的側(cè)面示意圖,支架BC是一段圓弧,臺面與兩支架的連接點A,B間的距離為30cmCD為水平地面,∠ADC75°,∠DAB60°,BDCD

1)求BD的長(結(jié)果保留整數(shù),參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,1.7);

2)如圖,若圓弧BC所在圓的圓心OCD的延長線上,且ODCD,求支架BC的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,以為斜邊,作直角,使點落在內(nèi),

1)如圖1,若,,點,分別為,的中點,連接,求線段的長;

2)如圖2,若,把繞點遞時針旋轉(zhuǎn)一定角度,得到,連接并延長變于點,求證:

3)如圖3,若,過點的直線交于點,交于點,,且,請直接寫出線段、、之間的關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊BC上,連結(jié)AE,EMAE,垂足為E,交CD于點M,AFBC,垂足為F,BHAE,垂足為H,交AF于點N,點PAD上一點,連接CP

1)若DP=2AP=4,CP=,CD=5,求△ACD的面積.

2)若AE=BN,AN=CE,求證:AD=CM+2CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的對角線交于點.點邊上,連結(jié)交對角線于點是線段的中點,連結(jié)

1)求證:

2)判斷的數(shù)量關(guān)系,并說明理由.

3)若面積分別為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在去年的體育中考中,某校6名學生的體育成績統(tǒng)計如下表:

成績

17

18

20

人數(shù)

2

3

1

則下列關(guān)于這組數(shù)據(jù)的說法錯誤的是(  )

A.眾數(shù)是18B.中位數(shù)是18C.平均數(shù)是18D.方差是2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店準備購進甲、乙兩種書包進行銷售,經(jīng)調(diào)查,乙書包的單價比甲書包貴元,用元購進乙書包的個數(shù)與用元購進甲書包的個數(shù)相等.

1)求甲、乙兩種書包的進價分別為多少元?

2)商戶購進甲、乙兩種書包共個進行試銷,其中甲書包的個數(shù)不少于個,且甲書包的個數(shù) 倍不大于乙書包的個數(shù),已知甲書包的售價為/個,乙書包的售價為/個,且 全部售出,設(shè)購進甲書包個,求該商店銷售這批書包的利潤之間的函數(shù)關(guān)系式,并 寫出的取值范圍;

3)在(2)的條件下,該店將個書包全部售出后,使用所獲的利潤又購進個書包捐贈給 貧困地區(qū)兒童,這樣該商店這批書包共獲利元.請求出該店第二次進貨所選用的進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達式;

2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?

查看答案和解析>>

同步練習冊答案