【題目】小明在研究利用木板余料裁出最大面積的矩形時(shí)發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個(gè)矩形當(dāng)DE,EF是中位線時(shí),所裁矩形的面積最大若木板余料的形狀改變,請(qǐng)你探究:

如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,現(xiàn)從中裁出一個(gè)以為內(nèi)角且面積最大的矩形,則該矩形的面積為______

如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量,,,且,從中裁出頂點(diǎn)M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______

【答案】400, 486

【解析】

1)如圖2中,延長(zhǎng)AECD的延長(zhǎng)線于F.則四邊形ABCF是矩形,把問題轉(zhuǎn)化為三角形內(nèi)接矩形即可解決問題.

2)構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.

解:(1)如圖2中,延長(zhǎng)AECD的延長(zhǎng)線于F.則四邊形ABCF是矩形.

AFBC30cm,ABCF20cm,

AE20cm,CD10cm,

EFDF10cm,

∵∠F90°,

∴∠AEM=∠FED=∠FDE=∠CDN45°,

AMAE20cmCDCN10cm,

BM40cmBN40cm,

∴△BMN的內(nèi)接矩形的面積的最大值=20×20400cm2).

2)如圖3中,

∵四邊形MNPQ是矩形,tanBtanC

∴可以假設(shè)QMPN4k,BMCN3k,

MN546 k

S矩形MNPQ4k546k)=﹣24k 2+486,

∵﹣240,

k 時(shí),矩形MNPQ的面積最大,最大值為486

此時(shí)BQPC5k ,符合題意,

∴矩形MNPQ的面積的最大值為486cm2

故答案為400,486

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M是正方形ABCDCD上一點(diǎn),連接AM,作DEAM于點(diǎn)E,BFAM于點(diǎn)F,連接BE.

(1)求證:AE=BF;

(2)已知AF=2,四邊形ABED的面積為24,求∠EBF的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】義烏國際小商品博覽會(huì)某志愿小組有五名翻譯,其中一名只會(huì)翻譯阿拉伯語,三名只會(huì)翻譯英語,還有一名兩種語言都會(huì)翻譯若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像與x軸交于點(diǎn)(-20)、(),且,與y軸的正半軸的交點(diǎn)在(02)的下方,則下列結(jié)論中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c,其中正確的結(jié)論有( ).

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是⊙O的直徑,P為⊙O外一點(diǎn),CD為⊙O上兩點(diǎn),連結(jié)OP,CD,PDPC.已知AB8

1)若OP5PD3,求證:PD是⊙O的切線;

2)若PD、PC是⊙O的切線;

①求證:OPCD;

②連結(jié)ADBC,如圖2,若∠DAB50°,∠CBA70°,求弧CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組就最想去的金華最美村落隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的最美鄉(xiāng)村下面是根據(jù)調(diào)查結(jié)果繪制出的不完整的統(tǒng)計(jì)圖

請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

被調(diào)查的學(xué)生總?cè)藬?shù)為______人;

扇形統(tǒng)計(jì)圖中最想去鄉(xiāng)村D”的扇形圓心角的度數(shù)為______;

若該校共有800名學(xué)生,請(qǐng)估計(jì)最想去鄉(xiāng)村B”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中,裝有除顏色外其余均相同的紅、藍(lán)兩種球,已知其中紅球有3個(gè),且從中任意摸出一個(gè)是紅球的概率為0.75.

(1)根據(jù)題意,袋中有 個(gè)藍(lán)球.

(2)若第一次隨機(jī)摸出一球,不放回,再隨機(jī)摸出第二個(gè)球.請(qǐng)用畫樹狀圖或列表法求“摸到兩球中至少一個(gè)球?yàn)樗{(lán)球(記為事件A)”的概率P(A).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委計(jì)劃在元且期間組織優(yōu)秀團(tuán)員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團(tuán)員參加服務(wù),其中男生6人,女生4人.

若從這10人中隨機(jī)選一人當(dāng)隊(duì)長(zhǎng),求選中女生當(dāng)隊(duì)長(zhǎng)的概率;

現(xiàn)決定從甲、乙中選一人當(dāng)隊(duì)長(zhǎng),他們準(zhǔn)備以游戲的方式?jīng)Q定由誰擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,34,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊(duì)長(zhǎng);否則,選乙為隊(duì)長(zhǎng)試問這個(gè)游戲公平嗎?請(qǐng)用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案