【題目】某校團委計劃在元且期間組織優(yōu)秀團員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團員參加服務(wù),其中男生6人,女生4人.
若從這10人中隨機選一人當隊長,求選中女生當隊長的概率;
現(xiàn)決定從甲、乙中選一人當隊長,他們準備以游戲的方式?jīng)Q定由誰擔任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊長;否則,選乙為隊長試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】兩個含30°角的直角三角形ABC和直角三角形BED如圖那樣拼接,C、B、D在同一直線上,AC=BD,∠ABC=∠E=30°,∠ACB=∠BDE=90°,M為線段CB上一個動點(不與C、B重合).過M作MN⊥AM,交直線BE于N,過N作NH⊥BD于H.
(1)當M在什么位置時,△AMC∽△NBH?
(2)設(shè)AC=.
①若CM=2,求BH的長;
②當M沿線段CB運動時,連接AN(圖中未連),求△AMN面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在研究“利用木板余料裁出最大面積的矩形”時發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個矩形當DE,EF是中位線時,所裁矩形的面積最大若木板余料的形狀改變,請你探究:
如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,,現(xiàn)從中裁出一個以為內(nèi)角且面積最大的矩形,則該矩形的面積為______.
如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量,,,且,從中裁出頂點M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O外一點,連接OC交⊙O于點D,連接BD并延長交線段AC于點E,∠CDE=∠CAD.
(1)求證:CD2=ACEC;
(2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若AE=EC,求tanB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC.
(1)求直線BC的解析式;
(2)點P是直線BC上方拋物線上的一點,過點P作PD⊥BC于點D,在直線BC上有一動點M,當線段PD最大時,求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當拋物線y′經(jīng)過點Q時,記頂點為Q′,是否存在以G'、K'、Q'為頂點的三角形是等腰三角形?若存在,求出點G′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大海中有A和B兩個島嶼,為測量它們之間的距離,在海岸線PQ上點E處測得∠AEP=60°,∠BEQ=45°;在點F處測得∠AFP=45°,∠BFQ=90°,EF=2km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說明理由;
(2)求兩個島嶼A和B之間的距離(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com