【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1 , l2交于點C.
(1)求直線l2的解析表達式;
(2)求△ADC的面積;
(3)若點P為第一象限上的一點,且以A,C,D,P為頂點的四邊形為平行四邊形,試求點P的坐標(biāo).
【答案】
(1)解:設(shè)直線l2的解析表達式為y=kx+b,
則有 ,
解得 .
故直線l2的解析表達式是y= x﹣6
(2)解:由 得 ,
所以點C坐標(biāo)為(2,﹣3),
則D點的坐標(biāo)為(1,0),
AD=3,
過點C作x軸的垂線,垂足為E,則CE=|﹣3|=3,
因此S△ADC= ×3×3=4.5
(3)解:如圖,設(shè)P(m,n),AD與CP的交點為F,
∵四邊形ACDP為平行四邊形
∴PF=PC,DF=FA
∵AD=3,
∴F(2.5,0)
∵C(2,﹣3)
由中點坐標(biāo)公式得m+2=2.5×2,n+(﹣3)=0×2,
∴m=3,n=3,
∴P(3,3).
【解析】(1)設(shè)出直線l2的解析表達式,代入直線上的兩點求得答案即可;(2)求得兩條直線的交點坐標(biāo),以及點D的坐標(biāo),進一步利用三角形的面積計算方法得出答案即可;(3)利用平行四邊形的性質(zhì)以及中點坐標(biāo)的求法得出答案即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程kx2+2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是( )
A. k≥﹣1 B. k>﹣1 C. k≥﹣1且k≠0 D. k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某歡樂谷為回饋廣大谷迷,在暑假期間推出學(xué)生個人門票優(yōu)惠價,各票價如下:
票價種類 | (A)學(xué)生夜場票 | (B)學(xué)生日通票 | (C)節(jié)假日通票 |
單價(元) | 80 | 120 | 150 |
某慈善單位欲購買三種類型的票共100張獎勵品學(xué)兼優(yōu)的留守學(xué)生,其中購買的B種票數(shù)是A種票數(shù)的3倍還多7張,設(shè)購買A種票x張,C種票y張.
(1)直接寫出x與y之間的函數(shù)關(guān)系式;
(2)設(shè)購票總費用為W元,求W(元)與x(張)之間的函數(shù)關(guān)系式;
(3)為方便學(xué)生游玩,計劃購買的學(xué)生夜場票不低于20張,且每種票至少購買5張,則有幾種購票方案?并指出哪種方案費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+2)x+2m=0.
(1)若該方程的一個根為x=1,求m的值;
(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年,我國汽車銷量超過了18500000輛,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為
▲ 輛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當(dāng)△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎.該打車方式的計價規(guī)則如圖①所示,若車輛以平均速度vkm/h行駛了skm,則打車費用為(ps+60q·)元(不足9元按9元計價).小明某天用該打車方式出行,按上述計價規(guī)則,其打車費用y(元)與行駛里程x(km)的函數(shù)關(guān)系也可由如圖②表示.
(1)當(dāng)x≥6時,求y與x的函數(shù)關(guān)系式.
(2)若p=1,q=0.5,求該車行駛的平均速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com