【題目】某歡樂谷為回饋廣大谷迷,在暑假期間推出學生個人門票優(yōu)惠價,各票價如下:
票價種類 | (A)學生夜場票 | (B)學生日通票 | (C)節(jié)假日通票 |
單價(元) | 80 | 120 | 150 |
某慈善單位欲購買三種類型的票共100張獎勵品學兼優(yōu)的留守學生,其中購買的B種票數是A種票數的3倍還多7張,設購買A種票x張,C種票y張.
(1)直接寫出x與y之間的函數關系式;
(2)設購票總費用為W元,求W(元)與x(張)之間的函數關系式;
(3)為方便學生游玩,計劃購買的學生夜場票不低于20張,且每種票至少購買5張,則有幾種購票方案?并指出哪種方案費用最少.
【答案】
(1)解:x+3x+7+y=100,
所以y=93﹣4x
(2)解:w=80x+120(3x+7)+150(93﹣4x)
=﹣160x+14790
(3)解:依題意得 ,
解得20≤x≤22,
因為整數x為20、21、22,
所以共有3種購票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);
而w=﹣160x+14790,
因為k=﹣160<0,
所以y隨x的增大而減小,
所以當x=22時,y最小=22×(﹣160)+14790=11270,
即當A種票為22張,B種票73張,C種票為5張時費用最少,最少費用為11270元
【解析】(1)根據總票數為100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中數據把三種票的費用加起來得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根據題意得到 ,再解不等式組且確定不等式組的整數解為20、21、22,于是得到共有3種購票方案,然后根據一次函數的性質求w的最小值.
【考點精析】認真審題,首先需要了解一元一次不等式組的應用(1、審:分析題意,找出不等關系;2、設:設未知數;3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案).
科目:初中數學 來源: 題型:
【題目】如圖,C為半圓內一點,O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_______cm2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店老板以每斤x元的單價購進草莓100斤,加價30%賣出70斤以后,每斤比進價降低a元,將剩下30斤全部賣出,則可獲得利潤為________元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點D,直線l2經過點A,B,直線l1 , l2交于點C.
(1)求直線l2的解析表達式;
(2)求△ADC的面積;
(3)若點P為第一象限上的一點,且以A,C,D,P為頂點的四邊形為平行四邊形,試求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知線段AB=30cm
(1)如圖1,點P沿線段AB自點A向點B以2cm/s的速度運動,同時點Q沿線段點B向點A以3cm/s的速度運動,幾秒鐘后,P、Q兩點相遇?
(2)如圖1,幾秒后,點P、Q兩點相距10cm?
(3)如圖2,AO=4cm,PO=2cm,當點P在AB的上方,且∠POB=60°時,點P繞著點O以30度/秒的速度在圓周上逆時針旋轉一周停止,同時點Q沿直線BA自B點向A點運動,假若點P、Q兩點能相遇,求點Q的運動速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒2個單位長的速度運動,動點Q同時從點A出發(fā),在線段AD上以每秒1個單位長的速度向點D運動,當其中一個動點到達端點時另一個動點也隨之停止運動.設運動的時間為t(秒).
(1)設△DPQ的面積為S,求S與t之間的函數關系式;
(2)當t為何值時,四邊形PCDQ是平行四邊形?
(3)分別求出當t為何值時,①PD=PQ,②DQ=PQ.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com