【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
【答案】(1)10°;(2)∠DAE=(∠C-∠B),證明見解析.
【解析】
(1)利用三角形內(nèi)角和定理求得∠BAC=100°,根據(jù)角平分線定義可知∠EAC=∠BAC,再利用三角形內(nèi)角和先求出∠DAC,再求得∠DAE;
(2)按照(1)中思路,進(jìn)行推導(dǎo)即可解決問題.
(1)解:∵∠B=30°,∠C=50°,
∴∠BAC=180°-∠B-∠C=100°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=50°
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°
∴∠DAE=∠EAC-∠DAC=50°-40°=10°
(2)解:∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C)
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,
∴∠DAE=∠EAC-∠DAC=(180°-∠B-∠C)-(90°-∠C)
=(∠C-∠B)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)得,連接已知.
求證:是等邊三角形;
當(dāng)時(shí),試判斷的形狀,并說明理由;
探究:當(dāng)為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若O是△ABC外一點(diǎn),OB、OC分別平分△ABC的外角∠CBE、∠BCF,若∠A=50°,則∠BOC=_______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】箱中裝有3張相同的卡片,它們分別寫有數(shù)字1,2,4;箱中也裝有3張相同的卡片,它們分別寫有數(shù)字2,4,5;現(xiàn)從箱、箱中各隨機(jī)地取出1張卡片,請你用畫樹形(狀)圖或列表的方法求:
(1)兩張卡片上的數(shù)字恰好相同的概率.
(2)如果取出箱中卡片上的數(shù)字作為十位上的數(shù)字,取出箱中卡片上的數(shù)字作為個(gè)位上的數(shù)字,求兩張卡片組成的兩位數(shù)能被3整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于點(diǎn),對稱軸為直線,與y軸的交點(diǎn)B在和之間包括這兩點(diǎn)下列結(jié)論:①;②當(dāng)時(shí),;③;④,其中正確的是
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工廠準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元?
工廠準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共50只,且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的4倍,當(dāng)購進(jìn)A型節(jié)能燈m只時(shí),工廠的總費(fèi)用為w元.
寫出元與只之間的函數(shù)關(guān)系式,并寫出自變量取值范圍;
如何購買A、B型節(jié)能燈,可以使總費(fèi)用最少,且總費(fèi)用最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com