【題目】已知ABC在平面直角坐標(biāo)系內(nèi),滿足:點(diǎn)A在y軸正半軸上移動(dòng),點(diǎn)B在x軸負(fù)半軸上移動(dòng),點(diǎn)C為y軸右側(cè)一動(dòng)點(diǎn).
點(diǎn)A0,a和點(diǎn)Bb,0坐標(biāo)恰好滿足:,直接寫出a,b的值.
⑵如圖①,當(dāng)點(diǎn)C在第四象限時(shí),若AM、AO將BAC三等分,BM、BO將ABC三等分,在A、B、C的運(yùn)動(dòng)過程中,試求出C和M的關(guān)系.
⑶探究:
(i)如圖②,當(dāng)點(diǎn)C在第四象限時(shí),若AM平分CAO,BM平分CBO,在A、B、C的運(yùn)動(dòng)過程中,C和M是否存在確定的數(shù)量關(guān)系?若存在,請(qǐng)證明你的結(jié)論;若不存在,請(qǐng)說明理由.
(ii)如圖③,當(dāng)點(diǎn)C在第一象限時(shí),且在(i)中的條件不變的前提下,C和M又有何數(shù)量關(guān)系?證明你的結(jié)論.
【答案】(1)a=-2,b=3; (2) ∠M-∠C=90°(或∠M+∠C=180°,即∠M與∠C互補(bǔ).);(3)(i)2∠M-∠C=90°; (ii)2∠M-∠C=90°.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到關(guān)于a,b的二元一次方程組,解方程組即可;
(2)根據(jù)三等分線的性質(zhì)可得出∠CAB=3∠MAB,∠CBA=3∠MBA,∠OAB=2∠MAB,∠OBA=2∠MBA.根據(jù)三角形的內(nèi)角和等于180°,可求出∠OAB+∠OBA=90°,從而得出∠MAB+∠MBA=45°,∠CAB+∠CBA=135°,再次根據(jù)三角形的內(nèi)角和等于180°分別求出∠M=135°,∠C=45°,從而得出∠M-∠C=90°.
(3)根據(jù)角平分線的定義和三角形的內(nèi)角和定理可得出結(jié)論2∠M-∠C=90°.
解:(1)∵
∴,解得:
即a,b的值分別為2,-3.
(2)如圖1.∠M-∠C=90°.理由如下:
∵AM、AO將BAC三等分,
∴∠CAB=3∠MAB,∠MAB=∠OAB.
∵BM、BO將ABC三等分,
∴∠CBA=3∠MBA,∠MBA=∠OBA.
∵∠OAB+∠OBA=90°,
∴∠MAB+∠MBA=90°=45°,
∵∠MAB+∠MBA+∠M=180°,
∴∠M=135°.
∵∠MAB+∠MBA=45°,
∴∠CBA+∠CAB=3(∠MAB+∠MBA)=345°=135°,
∵∠CBA+∠CAB+∠C=180°.
∴∠C=45°.
∴∠M-∠C=90°.(或∠M+∠C=180°,即∠M與∠C互補(bǔ).)
(3)(i)如圖2.∵AM平分CAO,
∴∠CAO=2∠MAO.
∵BM平分CBO,
∴CBO=2MBO.
∴∠CAO+CBO=2∠MAO+2MBO=2(∠MAO+MBO)
∵∠C+∠CAO+∠OAB+∠OBA+∠CBO=180°,∠OAB+∠OBA=90°,
∴∠C+∠CAO+∠CBO=180°-90°=90°.
∴∠C+2(∠MAO+MBO)= 90°.
∵∠M+∠MAO+∠OAB+∠OBA+∠MBO=180°,
∴∠M+∠MAO+∠MBO=180°-(∠OAB+∠OBA)=180°-90°=90°.
∴∠MAO+∠MBO=90°-∠M
∵∠C+2(∠MAO+MBO)= 90°,
∴∠C+2(90°-∠M) = 90°.
即2∠M-∠C=90°.
(ii)如圖3. ∵AM平分CAO,
∴∠CAO=2∠MAO.
∵BM平分CBO,
∴CBO=2MBO.
∴∠CAO-CBO=2(∠MAO-MBO)
∵∠C+∠CAO+∠0AB+∠OBA-∠CBO=180°,且∠OAB+∠OBA=90°,
∴∠C+∠CAO-∠CBO=90°.
∴∠C+2(∠MAO-MBO)= =90°.
∵∠M+∠MAO+∠0AB+∠OBA-∠MBO=180°,
∴∠M+∠MAO-∠MBO=90°,
∴∠MAO-∠MBO=90°-∠M.
∴∠C+2(90°-∠M)= 90°,
即2∠M-∠C=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,是的中點(diǎn),點(diǎn)在邊上,將沿翻折,使點(diǎn)落在點(diǎn)處,當(dāng)時(shí),________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E、F分別是邊BC、CD上的動(dòng)點(diǎn),且BE=CF,連接BF、DE,則BF+DE的最小值為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列由5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1).其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點(diǎn)A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點(diǎn)的坐標(biāo)
(3)如圖3,點(diǎn)C(0,3),Q、A兩點(diǎn)均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點(diǎn),OP的長(zhǎng)度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張質(zhì)地、大小、背面完全相同的卡片上,正面分別畫有平行四邊形、矩形、等腰三角形、菱形四個(gè)圖案.現(xiàn)把它們的正面向下隨機(jī)擺放在桌面上,從中任意抽出一張,則抽出的卡片正面圖案是中心對(duì)稱圖形的概率為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)平行于x軸的一條直線交拋物線于M,N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的面積為4,點(diǎn),分別是,的中點(diǎn),將點(diǎn)折到上的點(diǎn)處,折痕為,點(diǎn)在上,則長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為11,點(diǎn)B對(duì)應(yīng)的數(shù)為b,點(diǎn)C在點(diǎn)B右側(cè),長(zhǎng)度為3個(gè)單位的線段BC在數(shù)軸上移動(dòng),
(1)如圖1,當(dāng)線段BC在O,A兩點(diǎn)之間移動(dòng)到某一位置時(shí),恰好滿足線段AC=OB,求此時(shí)b的值;
(2)線段BC在數(shù)軸上沿射線AO方向移動(dòng)的過程中,是否存在AC﹣OB=AB?若存在,求此時(shí)滿足條件的b的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com