【題目】參與兩個數(shù)學活動,再回答問題:
活動:觀察下列兩個兩位數(shù)的積兩個乘數(shù)的十位上的數(shù)都是9,個位上的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,,,.
活動:觀察下列兩個三位數(shù)的積兩個乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個位上的數(shù)組成的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,.
分別寫出在活動、中你所猜想的是哪個算式的積最大?
對于活動,請用二次函數(shù)的知識證明你的猜想.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.
⑴求證:AB是⊙O的切線;
⑵若AC=8,tan∠BAC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù))的圖像在第一、三象限.
(1)求m的取值范圍.
(2)如圖,若該反比例函數(shù)的圖像經(jīng)過ABOD的頂點D,點A,B的坐標分別為(0,3),(-2,0).
①求出該反比例函數(shù)的表達式;
②設P是該反比例函數(shù)圖像上的一點,若OD=OP,則點P的坐標為________________;若以D,O,P為頂點的三角形是等腰三角形,則滿足條件的點P有________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.
(1)證明:AC=AF;
(2)若AD=2,AF=,求AE的長;
(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結BC.
(1)求該二次函數(shù)的解析式及點M的坐標;
(2)若將該二次函數(shù)圖象向下平移個單位,使平移后得到的二次函數(shù)圖象的頂點與△ABC的外心重合,求的取值;
(3)點P是坐標平面內(nèi)的一點,使得△ACB與△MCP,且CM的對應邊為AC,請寫出所有點P的坐標(直接寫出結果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1…按這樣的規(guī)律進行下去,第2012個正方形的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,E為的中點,將沿翻折得到,延長交于,,垂足為,連接.以下結論:平分;;;其中正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖,已知在△ABC 中,AB=AC,∠BAC=90°,點 A 在 x 軸上,點 B 在 y 軸上,點在二次函數(shù)的圖像上.
(1)求二次函數(shù)的表達式;
(2)求點 A,B 的坐標;
(3)把△ABC 沿 x 軸正方向平移, 當點 B 落在拋物線上時, 求△ABC 掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以AB為直徑的半⊙O上有點C,點D在上,過圓心作OF⊥CD的于點F,OF、AD的延長線交于點E,連結CE,若∠DEC=90°.
(1)試說明∠BAC=45°;
(2)若DF=1,△ACE的面積為△DCE面積的3倍,連接AC交OE于點P,求tan∠ACD的值和OP的長;
(3)在(2)的條件下,延長EC與AB的延長線相交于點G,直接寫出BG的長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com