【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個(gè)實(shí)數(shù)根;

2)若方程有一根小于1,求的取值范圍.

【答案】1)見解析;(2k<0

【解析】

1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得=k-12≥0,由此可證出方程總有兩個(gè)實(shí)數(shù)根;

2)利用分解因式法解一元二次方程,可得出x=2、x=k+1,根據(jù)方程有一根小于1,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.

1)證明:∵在方程中,=[-k+3]-4×1×2k+2=k-2k+1=k-1≥0

∴方程總有兩個(gè)實(shí)數(shù)根.

2 x-k+3x+2k+2=x-2)(x-k-1=0

x=2,x=k+1

∵方程有一根小于1,

k+1<1,解得:k<0,

k的取值范圍為k<0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC,∠C=90°,BD是角平分線,點(diǎn)OAB,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)DBC于點(diǎn)E

(1)求證ACO的切線;

(2)OB=10,CD=,求圖中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.說明:RP=RQ.請(qǐng)?zhí)骄肯铝凶兓?/span>

變化一:交換題設(shè)與結(jié)論.

已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,R是OA的延長(zhǎng)線上一點(diǎn),且RP=RQ.

求證:RQ為⊙O的切線.

變化二:運(yùn)動(dòng)探究:

(1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷)

(2)如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么?

(3)若OA所在的直線向上平移且與⊙O無公共點(diǎn),請(qǐng)你根據(jù)原題中的條件完成圖4,并判斷結(jié)論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x 的方程 x 2m 1 x m 2 0

1)若方程總有兩個(gè)實(shí)數(shù)根,求m 的取值范圍;

2)若兩實(shí)數(shù)根、滿足 11 12 ,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線的對(duì)稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實(shí)數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個(gè)數(shù)是( 。

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,AB=8,BC=4,動(dòng)點(diǎn)P以每秒2個(gè)單位的速度從點(diǎn)A沿線段ABB點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以每秒3個(gè)單位的速度從點(diǎn)B出發(fā)沿B-C-D的方向運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí)P、Q同時(shí)停止運(yùn)動(dòng),若記△PQA的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致表示yx之間函數(shù)關(guān)系圖象的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地和地之間的鐵路交通設(shè)有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時(shí)另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時(shí)間(時(shí))的函數(shù)關(guān)系如圖所示.

1地到地的距離為 千米,普通列車到達(dá)地所用時(shí)間為 小時(shí);

2)求特快列車與地的距離的函數(shù)關(guān)系式;

3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時(shí)與普通列車相遇,直接寫出地與鐵路橋之間的距離 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(PAB中點(diǎn))所在的直線上,得到經(jīng)過點(diǎn)D的折痕DE,則∠DEC的大小為( )

A. 78° B. 45° C. 60° D. 75°

查看答案和解析>>

同步練習(xí)冊(cè)答案