【題目】根據(jù)2019年莆田市初中畢業(yè)升學(xué)體育考試內(nèi)容要求,甲、乙、丙在某節(jié)體育課他們各自隨機(jī)分別到籃球場A處進(jìn)行籃球運(yùn)球繞桿往返訓(xùn)練或到足球場B處進(jìn)行足球運(yùn)球繞桿訓(xùn)練,三名學(xué)生隨機(jī)選擇其中的一場地進(jìn)行訓(xùn)練.
(1)用列表法或樹形圖表示出的所用可能出現(xiàn)的結(jié)果;
(2)求甲、乙、丙三名學(xué)生在同一場地進(jìn)行訓(xùn)練的概率;
(3)求甲、乙、丙三名學(xué)生中至少有兩人在B處場地進(jìn)行訓(xùn)練的概率.
【答案】(1)共有8種可能;(2);(3)
【解析】
(1)用樹狀圖分3次實(shí)驗(yàn)列舉出所有情況即可;
(2)看3人在同一場地進(jìn)行訓(xùn)練的情況數(shù)占總情況數(shù)的多少即可;
(3)看至少有兩人在處場地進(jìn)行訓(xùn)練的情況數(shù)占總情況數(shù)的多少即可.
(1) 由上樹狀圖可知甲、乙、丙三名學(xué)生進(jìn)行體育訓(xùn)練共有8種可能,
(2)所有出現(xiàn)情況等可能,其中甲、乙、丙三名學(xué)生在同一場地進(jìn)行訓(xùn)練有2種可能并把它記為事件A,則P(A)=
(3) 其中甲、乙、1丙三名學(xué)生中至少有兩人在B處場地進(jìn)行訓(xùn)練有4種可能并把它記為事件B,則P(B)=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一個(gè)動點(diǎn),以B點(diǎn)為旋轉(zhuǎn)中心把線段BP逆時(shí)針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過第一象限內(nèi)的一點(diǎn)A(n,4),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為2.
(1)求m和n的值;
(2)若一次函數(shù)y=kx+2的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知: 是的兩條弦,于點(diǎn),的平分線交于點(diǎn),交于點(diǎn),連接
如圖1,求的度數(shù);
如圖2,為上一點(diǎn),連接,當(dāng)時(shí),求證:
如圖3 ,在的條件下,當(dāng)為的直徑時(shí),經(jīng)過點(diǎn)的弦交于點(diǎn),若的面積為,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC和BD交于點(diǎn)O,分別過點(diǎn)C、D作CE∥BD,DE∥AC,CE和DE交于點(diǎn)E.
(1)求證:四邊形ODEC是矩形;
(2)當(dāng)∠ADB=60°,AD=2時(shí),求sin∠AED的值,求∠EAD的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程
(1)求證:m取任何值時(shí),方程總有實(shí)根.
(2)若二次函數(shù)的圖像關(guān)于y軸對稱.
a、求二次函數(shù)的解析式
b、已知一次函數(shù),證明:在實(shí)數(shù)范圍內(nèi),對于同一x值,這兩個(gè)函數(shù)所對應(yīng)的函數(shù)值均成立.
(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實(shí)數(shù)范圍內(nèi),對于x的同一個(gè)值,這三個(gè)函數(shù)所對應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等腰三角形,,點(diǎn)是上一點(diǎn),過點(diǎn)作交于點(diǎn),交延長線于點(diǎn).
(1)證明:是等腰三角形;
(2)若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動點(diǎn),當(dāng)△BEC面積最大時(shí),請求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA(不包括端點(diǎn))上運(yùn)動,且滿足,.
(1)求證:;
(2)試判斷四邊形EFGH的形狀,并說明理由.
(3)請?zhí)骄克倪呅?/span>EFGH的周長一半與矩形ABCD一條對角線長的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com