【題目】如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M,P,CD交BE于點(diǎn)Q,連接PQ,BM,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】試題分析:∵△ABD、△BCE為等邊三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBQ=60°,
在△ABE和△DBC中,,
∴△ABE≌△DBC(SAS),
∴①正確;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,
∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,
∴②正確;
在△ABP和△DBQ中,,
∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ為等邊三角形,
∴③正確;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,
∴P、B、Q、M四點(diǎn)共圓,∵BP=BQ,∴,∴∠BMP=∠BMQ,
即MB平分∠AMC;∴④正確;
綜上所述:正確的結(jié)論有4個(gè);
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=與一次函數(shù)y=﹣x+7的圖象交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請直接寫出點(diǎn)M的坐標(biāo);
(3)如圖、設(shè)x軸上一點(diǎn)P(a,0),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交y=和y=﹣x+7的圖象于點(diǎn)B、C,連接OC,若BC=OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);
(4)在(3)的條件下,設(shè)直線y=﹣x+7交x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長最小,請直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB,∠DOC都是直角.
(1)如果∠AOD=128°,∠BOC的度數(shù).
(2)除直角外,找出圖中其他相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)是(2,3).
(1)求出這兩個(gè)函數(shù)的表達(dá)式;
(2)作出兩個(gè)函數(shù)的草圖,利用你所作的圖形,猜想并驗(yàn)證這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo);
(3)直接寫出使反比例函數(shù)值大于正比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(2,﹣3)關(guān)于x軸的對稱點(diǎn)是__________,關(guān)于y軸的對稱點(diǎn)是__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿x軸做如下移動:第一次點(diǎn)A向左移動3個(gè)單位長度到達(dá)點(diǎn)A1,第二次將點(diǎn)A1向右移動6個(gè)單位長度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動9個(gè)單位長度到達(dá)點(diǎn)A3,按照這種移動規(guī)律移動下去.第n次移動到點(diǎn)An,則點(diǎn)A2015表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組的同學(xué)打算運(yùn)用所學(xué)的知識測量側(cè)面支架的最高點(diǎn)E到地面的距離EF.經(jīng)測量,支架的立柱BC與地面垂直,即∠BCA=90°,且BC=1.5m,點(diǎn)F、A、C在同一條水平線上,斜桿AB與水平線AC的夾角∠BAC=30°,支撐桿DE⊥AB于點(diǎn)D,該支架的邊BE與AB的夾角∠EBD=60°,又測得AD=1m.請你求出該支架的邊BE及頂端E到地面的距離EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,這兩個(gè)方程的所有實(shí)數(shù)根之和為( )
A. 4 B. ﹣4 C. ﹣6 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點(diǎn)P從點(diǎn)O開始沿OA邊向點(diǎn)A以1厘米/秒的速度移動;點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1厘米/秒的速度移動.如果P、Q同時(shí)出發(fā),用t(秒)表示移動的時(shí)間(0≤t≤6).
(1)設(shè)△POQ的面積為s,寫出s關(guān)于t的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),△POQ的面積最大,這時(shí)面積是多少
(2)當(dāng)t為何值時(shí),△POQ與△AOB相似?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com