【題目】為了解南山荔枝的銷售情況,某部門對該市場的三種荔枝品種A,B,C在6月上半月的銷售進行調(diào)查統(tǒng)計,繪制成如下兩個統(tǒng)計圖(均不完整),請你結(jié)合圖中的信息,解答下列問題:
(1)該市場6月上半月共銷售這三種荔枝多少噸?
(2)補全圖1的統(tǒng)計圖并計算圖2中A所在扇形的圓心角的度數(shù);
(3)某商場計劃六月下半月進貨A、B、C三種荔枝共300千克,根據(jù)該市場6月上半月的銷售情況,求該商場應(yīng)購進C品種荔枝多少千克比較合理?

【答案】
(1)解:120÷30%=400(噸)
(2)解:C品種的零售量為400﹣40﹣120=240(噸),

圖2中A所在扇形的圓心角的度數(shù)為 ×360°=36°,

補全圖象如下:


(3)解:300× =180(千克)
【解析】(1)根據(jù)B品種有120噸,占30%即可求得調(diào)查的這三種荔枝的總噸數(shù);(2)根據(jù)各品種質(zhì)量之和等于400可得C品種質(zhì)量,再用A所占比例乘以360度可得答案;(3)總數(shù)量300乘以C品種荔枝的噸數(shù)所占的百分比即可求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上 A點表示的數(shù)是 a ,B 點表示的數(shù)是b ,且 ab滿足|a 8|b-220.動線段 CD=4(點 D 在點 C 的右側(cè)),從點 C與點 A重合的位置出發(fā),以每秒 2 個單位的速度向右運動,運動時間為 t秒.

(1)求a,b的值, 運動過程中,點 D 表示的數(shù)是多少,(用含有 t 的代數(shù)式表示)

(2)在 B、C、D 三個點中,其中一個點是另外兩個點為端點的線段的中點,求 t 的值;

(3)當線段 CD 在線段 AB上(不含端點重合)時,如圖,圖中所有線段的和記作為 S, 則 S的值是否隨時間 t 的變化而變化?若變化,請說明理由;若不變,請求出 S值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點CD,點P是直線CD上的一個動點。

(1)如果點P運動到C、D之間時,試探究∠PAC,∠APB,∠PBD之間的關(guān)系,并說明理由。

(2)若點PC、D兩點的外側(cè)運動時(P點與點C、D不重合),∠PAC,∠APB,∠PBD之間 的關(guān)系是否發(fā)生改變?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學在創(chuàng)建“特色校園”的活動中,將本校的辦學理念做成宣傳牌(AB),放置在教學樓的頂部(如圖所示).小明在操場上的點D處,用1米高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37°,然后向教學樓正方向走了4米到達點F處,又從點E測得宣傳牌的頂部A的仰角為45°.已知教學樓高BM=17米,且點A,B,M在同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線的解析表達式為,且軸交于點,直線經(jīng)過點,直線,交于點

1求點的坐標;

2求直線的解析表達式;

3的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了組織一個50人的旅游團開展鄉(xiāng)間民俗游,旅游團住村民家,住宿客房有三人間、二人間、單人間三種,收費標準是三人間每人每晚20元,二人間每人每晚30元,單人間每人每晚50元,旅游團共住20間客房,旅游團如何安排住宿才能夠使得住宿費最低,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司針對新客戶優(yōu)惠收費,首件物品的收費標準為:若重量不超過10千克,則免運費;當重量為千克時,運費為;第二件物品的收費標準為:當重量為千克時,運費為

(1)若新客戶所奇首件物品的重量為13千克,則運費是多少元?

(2)若新客戶所寄首件物品的運費為32,則物品的重量是多少千克?

(3)若新客戶所寄首件物品與第二件物品的重量之比為2:5,共付運費為60,則兩件物品的重量各是多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣ ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊)

(1)求拋物線的解析式及A,B兩點的坐標;
(2)若(1)中拋物線的對稱軸上有點P,使△ABP的面積等于△ABC的面積的2倍,求出點P的坐標;
(3)在(1)中拋物線的對稱軸l上是否存在一點Q,使AQ+CQ的值最?若存在,求AQ+CQ的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案