分析:(1)求出對(duì)稱軸,根據(jù)①BE定值,故當(dāng)P為直線AE與拋物線對(duì)稱軸交點(diǎn)時(shí),△PBE的周長(zhǎng)最小,求出P點(diǎn)坐標(biāo);②當(dāng)點(diǎn)Q位于直線EB與拋物線對(duì)稱交點(diǎn)時(shí),QE-QB的值最大,據(jù)此求出Q點(diǎn)坐標(biāo).
(2)若直線CD與⊙B相切,∠EAO=α,則∠ADB=∠ODC=α,在Rt△AOE中,易求得∠DEO=∠EDC=90°-α,∠DOE=α,故有CE=CD=OC,即是OE中點(diǎn),判斷出關(guān)系式;
(3)設(shè)拋物線對(duì)稱軸與x軸交與T,則S
△CPB=S
梯形OCPT-S
△CPB-S
△COB,列出面積的表達(dá)式
t,根據(jù)t的取值范圍求出面積的取值范圍.
解答:解:(1)當(dāng)y=0時(shí),a(x+10)(x+5)=0,x
1=-10,x
2=-5.
對(duì)稱軸為x=
=-7.5;
①如圖a,∵點(diǎn)B和點(diǎn)A關(guān)于拋物線對(duì)稱軸對(duì)稱,而對(duì)于每一個(gè)確定的t值,BE定值,故當(dāng)P為直線AE與拋物線對(duì)稱軸交點(diǎn)時(shí),△PBE的周長(zhǎng)最小.
易求得直線EA對(duì)應(yīng)的一次函數(shù)為:y=
x+2t,當(dāng)x=-7.5時(shí),y=0.5t,即P(-7.5,0.5t).
②如圖b,當(dāng)點(diǎn)Q位于直線EB與拋物線對(duì)稱交點(diǎn)時(shí),QE-QB的值最大,否則Q、B、E三點(diǎn)構(gòu)成三角形,則QE-QB<EB,
由直線EB對(duì)應(yīng)一次函數(shù)為:y=
x+2t,當(dāng)x=-7.5時(shí),y=-t,即Q(-7.5,-t);
(2)如圖c,令y=a(x+10)(x+5)中,x=0,得C(0,50a),
解法1:若直線CD與⊙B相切,連接BD,則BD⊥DC,又AO是⊙B的直徑,
∴AD⊥DO,若設(shè)∠EAO=α,則∠ADB=∠ODC=α,在Rt△AOE中,
易求得∠DEO=∠EDC=90°-α,
∠DOE=α,故有CE=CD=OC,即是OE中點(diǎn),故100a=2t,即t=50a.
解法2:∵CD、CO都與⊙B相切,
∴CD=CO,
∴∠CDO=∠COD,
在Rt△EDO中,∠DEO+∠DOE=90°,∠EDC+∠ODC=90°,
∴∠EDC=∠OEDC,
∴CD=CE,又由CD=CO,
∴CE=CO,即C是OE中點(diǎn),
故100a=2t,即t=50a.
(3)解法1:易證Rt△OAD∽R(shí)t△EAO,設(shè)OD=x,即
=
,即x
2=
,由36≤
≤64,得
≤t≤
.
由(1)P(-7.5,0.5t),由(2)C(0,t),如圖d,設(shè)拋物線對(duì)稱軸與x軸交與T,則S
△CPB=S
梯形OCPT-S
△CPB-S
△COB=
(0.5t+t)×
-
×
×0.5t-
×5×t=
t,
∵
≤
t≤
,
∴△CPB的面積的取值范圍是:
≤S
△CPB≤
.
解法2:由圖e,當(dāng)OD最長(zhǎng)時(shí),在Rt△AOD中,tan∠DAO=
=
,
在Rt△AOE中,tan∠EAO=
=
=
,即t=
,
同理,當(dāng)OD最短時(shí),t=
,故
≤t≤
,
如圖e(為了清晰,隱藏了拋物線),
∵AE∥BC,
∴S
△PBC=S
△DBC,
又∵S
△OBC=S
△DBC,
∴S
△PBC=S
△OBC=
,
∵
≤
t≤
,
∴△CPB的面積的取值范圍是:
≤S
△CPB≤
.