【題目】已知多項(xiàng)式x3﹣3xy2﹣4的常數(shù)是a,次數(shù)是b.

(1)則a=_____,b=_____;并將這兩數(shù)在數(shù)軸上所對應(yīng)的點(diǎn)A、B表示出來;

(2)數(shù)軸上在B點(diǎn)右邊有一點(diǎn)CA、B兩點(diǎn)的距離之和為11,求點(diǎn)C在數(shù)軸上所對應(yīng)的數(shù);

(3)在數(shù)軸上是否存在點(diǎn)P,使PA、B、C的距離和等于12?若存在,求點(diǎn)P對應(yīng)的數(shù);若不存在,請說明理由.

(4)在數(shù)軸上是否存在點(diǎn)P,使PA、B、C的距離和最。咳舸嬖,求該最小值,并求此時(shí)P點(diǎn)對應(yīng)的數(shù);若不存在,請說明理由.

【答案】(1)-4,3;(2)5;(3)P=0;(4)點(diǎn)P表示的數(shù)為3時(shí),PA、B、C的距離和最小,最小值為9.

【解析】(1)根據(jù)多項(xiàng)式中常數(shù)項(xiàng)及多項(xiàng)式的次數(shù)的定義即可求解;

(2)設(shè)點(diǎn)C在數(shù)軸上所對應(yīng)的數(shù)為x,根據(jù)CA+CB=11列出方程,解方程即可;

(3)設(shè)點(diǎn)P在數(shù)軸上所對應(yīng)的數(shù)為a,則|a+4|+|a-3|+|a-5|=12,根據(jù)絕對值的性質(zhì)求解可得;

(4)點(diǎn)P在點(diǎn)A和點(diǎn)B(含點(diǎn)A和點(diǎn)B)之間,依此即可求解.

1)∵多項(xiàng)式x3-3xy2-4的常數(shù)項(xiàng)是a,次數(shù)是b,

a=-4,b=3,

點(diǎn)A、B在數(shù)軸上如圖所示:

,

故答案為:-4、3;

(2)設(shè)點(diǎn)C在數(shù)軸上所對應(yīng)的數(shù)為x,

CB點(diǎn)右邊,

x>3.

根據(jù)題意得

x-3+x-(-4)=11,

解得x=5,

即點(diǎn)C在數(shù)軸上所對應(yīng)的數(shù)為5;

(3)設(shè)點(diǎn)P在數(shù)軸上所對應(yīng)的數(shù)為a,

|a+4|+|a-3|+|a-5|=12,

、當(dāng)a<-4時(shí),-a-4+3-a+5-a=12,解得a=->-4(舍);

、當(dāng)-4≤a<3時(shí),a+4+a-3+5-a=12,解得a=0;

、當(dāng)3≤a<5時(shí),a+4+a-3+5-a=12,解得a=6>5(舍);

、當(dāng)a≥5時(shí),a+4+a-3+a-5=12,解得a=

綜上,P=0

(4)存在,點(diǎn)P表示的數(shù)為3,該最小值為9,

設(shè)PA、B、C的距離和為d,

d=|x+4|+|x-3|+|x-5|,

當(dāng)x≤-4時(shí),d=-x-4+3-x+5-x=-3x+4,

x=-4時(shí),d最小=16;

、當(dāng)-4<x≤3時(shí),d=x+4+3-x+5-x=-x+12,

x=3時(shí),d最小=9;

、當(dāng)3<x≤5時(shí),d=x+4+x-3+5-x=x+6,

x=5時(shí),d最小=11;

、當(dāng)x>5時(shí),d=x+4+x-3+x-5=3x-4,此時(shí)無最小值;

綜上,當(dāng)點(diǎn)P表示的數(shù)為3時(shí),PA、B、C的距離和最小,最小值為9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車P沿道路ON方向行駛時(shí),在以P為圓心50米長為半徑的圓形區(qū)域內(nèi)都會(huì)受到卡車噪聲的影響,且卡車P與學(xué)校A的距離越近噪聲影響越大.若一直重型運(yùn)輸卡車P沿道路ON方向行駛的速度為18千米/時(shí).

(1)求對學(xué)校A的噪聲影響最大時(shí)卡車P與學(xué)校A的距離;

(2)求卡車P沿道路ON方向行駛一次給學(xué)校A帶來噪聲影響的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,COE=90°,OD平分∠BOF,BOE=50°.

(1)求∠AOC的度數(shù);

(2)求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中, , 分別是、的中點(diǎn).

)求證:

)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點(diǎn)A′和A,B′和B分別對應(yīng)).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng)如果租用6輛大客車和5輛小客車恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個(gè).

(1)求每輛大客車和每輛小客車的乘客座位數(shù);

(2)由于最后參加活動(dòng)的人數(shù)增加了30,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車數(shù)量的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),RtAOB中,∠A=90°AOB=60°,OB=,AOB的平分線OCABC,過O點(diǎn)做與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BCCO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線COON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)PQ同時(shí)停止運(yùn)動(dòng).

1)求OC、BC的長;

2)設(shè)CPQ的面積為S,求St的函數(shù)關(guān)系式;

3)當(dāng)POCQON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQOA交于點(diǎn)M,當(dāng)t為何值時(shí),OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( 2=( 2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是(
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)探究證明:

在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMN于點(diǎn)D,BEMN于點(diǎn)E,當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)發(fā)現(xiàn)探究:

當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立,如果不成立,DE、AD、BE應(yīng)滿足的關(guān)系是_____

(3)解決問題:

當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),若BE=8,AD=2,請直接寫出DE的長為_____

查看答案和解析>>

同步練習(xí)冊答案